Cargando…

Process Chain Development for the Fabrication of Three-Dimensional Braided Oxide Ceramic Matrix Composites

Fiber composites with a three-dimensional braided reinforcement architecture have higher fiber volume content and Z-fiber content compared to a two-dimensional braided reinforcement architecture; as a result, the shear strength increases. Porous oxide fiber composites (OFCs) have the inherent weakne...

Descripción completa

Detalles Bibliográficos
Autores principales: Kolloch, Martin, Puchas, Georg, Grigat, Niels, Vollbrecht, Ben, Krenkel, Walter, Gries, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585148/
https://www.ncbi.nlm.nih.gov/pubmed/34771864
http://dx.doi.org/10.3390/ma14216338
Descripción
Sumario:Fiber composites with a three-dimensional braided reinforcement architecture have higher fiber volume content and Z-fiber content compared to a two-dimensional braided reinforcement architecture; as a result, the shear strength increases. Porous oxide fiber composites (OFCs) have the inherent weakness of a low interlaminar shear strength, which can be specifically increased by the use of a three-dimensional fiber reinforcement. In this work, the braiding process chain for processing highly brittle oxide ceramic fibers is modified; as a consequence, a bobbin, which protects the filament, is developed and quantitatively evaluated on a test rig with regard to tension and filament breakage. Subsequently, a braiding process is designed which takes into account fiber-protecting aspects, and a three-dimensional reinforced demonstrator is produced and tested. After impregnation with an Al(2)O(3)-ZrO(2) slurry, by either a prepreg process or a vacuum-assisted process, as well as subsequent sintering, the three-dimensional braid-reinforced OFC exhibits an interlaminar shear strength (ILSS) which is higher than that of two-dimensional braid- or fabric-reinforced samples by 64–95%. The influence of the manufacturing process on the relative macropore content is investigated and correlated with the mechanical properties.