Cargando…

PAI Materials Synthesized by 4,4′-Diaminodiphenyl ether/2,2′-Bis (trifluoromethyl)-4,4′-diaminophenyl ether and Their Properties

In this paper, 4,4′-diaminodiphenyl ether and 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether are selected for molecular structure design, and PAI materials are synthesized by acyl chloride method. 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether has the same main chain structure as 4,4′-diam...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Haiyang, Li, Duxin, Yang, Jun, Wang, Jin, Gan, Shunchang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585165/
https://www.ncbi.nlm.nih.gov/pubmed/34771902
http://dx.doi.org/10.3390/ma14216376
_version_ 1784597625405702144
author Yang, Haiyang
Li, Duxin
Yang, Jun
Wang, Jin
Gan, Shunchang
author_facet Yang, Haiyang
Li, Duxin
Yang, Jun
Wang, Jin
Gan, Shunchang
author_sort Yang, Haiyang
collection PubMed
description In this paper, 4,4′-diaminodiphenyl ether and 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether are selected for molecular structure design, and PAI materials are synthesized by acyl chloride method. 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether has the same main chain structure as 4,4′-diaminodiphenyl ether, but the side chain contains two trifluoromethyl groups, which has high fluorine content. PAI terpolymers were prepared by compounding two diamine monomers, and the effects of trifluoromethyl on heat resistance, friction and wear properties, hydrophobic properties and mechanical properties of PAI materials were studied. The results showed that with the increase of trifluoromethyl content, the Tg of PAI material first increased and then changed little, and the Td(5%) would decrease and the tensile properties would also decrease. The wear mechanism of PAI varied with the content of trifluoromethyl. With the increase of the amount of fluorinated diamine monomer, the adhesive wear degree of PAI materials gradually increased, and reached the maximum when the molar ratio of the two monomers was 5:5, and then decreased gradually. Different trifluoromethyl content had little effect on friction coefficient, and the friction coefficient increased slightly when the molar ratio of 4,4′-diaminodiphenyl ether to 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether is 1:9. With the increase of trifluoromethyl content, the wear of PAI material would increase. With the increase of the amount of trifluoromethyl, the water absorption of PAI material decreased and the water contact angle increased, which indicated that the hydrophobic property of PAI material was improved. To sum up, the results of this study showed that the introduction of trifluoromethyl into the side chain provided an effective way to prepare PAI materials with low water absorption. Considering the comprehensive properties such as heat resistance, friction and wear, tensile properties, etc., the appropriate addition amount is 10–30%.
format Online
Article
Text
id pubmed-8585165
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85851652021-11-12 PAI Materials Synthesized by 4,4′-Diaminodiphenyl ether/2,2′-Bis (trifluoromethyl)-4,4′-diaminophenyl ether and Their Properties Yang, Haiyang Li, Duxin Yang, Jun Wang, Jin Gan, Shunchang Materials (Basel) Article In this paper, 4,4′-diaminodiphenyl ether and 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether are selected for molecular structure design, and PAI materials are synthesized by acyl chloride method. 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether has the same main chain structure as 4,4′-diaminodiphenyl ether, but the side chain contains two trifluoromethyl groups, which has high fluorine content. PAI terpolymers were prepared by compounding two diamine monomers, and the effects of trifluoromethyl on heat resistance, friction and wear properties, hydrophobic properties and mechanical properties of PAI materials were studied. The results showed that with the increase of trifluoromethyl content, the Tg of PAI material first increased and then changed little, and the Td(5%) would decrease and the tensile properties would also decrease. The wear mechanism of PAI varied with the content of trifluoromethyl. With the increase of the amount of fluorinated diamine monomer, the adhesive wear degree of PAI materials gradually increased, and reached the maximum when the molar ratio of the two monomers was 5:5, and then decreased gradually. Different trifluoromethyl content had little effect on friction coefficient, and the friction coefficient increased slightly when the molar ratio of 4,4′-diaminodiphenyl ether to 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether is 1:9. With the increase of trifluoromethyl content, the wear of PAI material would increase. With the increase of the amount of trifluoromethyl, the water absorption of PAI material decreased and the water contact angle increased, which indicated that the hydrophobic property of PAI material was improved. To sum up, the results of this study showed that the introduction of trifluoromethyl into the side chain provided an effective way to prepare PAI materials with low water absorption. Considering the comprehensive properties such as heat resistance, friction and wear, tensile properties, etc., the appropriate addition amount is 10–30%. MDPI 2021-10-25 /pmc/articles/PMC8585165/ /pubmed/34771902 http://dx.doi.org/10.3390/ma14216376 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yang, Haiyang
Li, Duxin
Yang, Jun
Wang, Jin
Gan, Shunchang
PAI Materials Synthesized by 4,4′-Diaminodiphenyl ether/2,2′-Bis (trifluoromethyl)-4,4′-diaminophenyl ether and Their Properties
title PAI Materials Synthesized by 4,4′-Diaminodiphenyl ether/2,2′-Bis (trifluoromethyl)-4,4′-diaminophenyl ether and Their Properties
title_full PAI Materials Synthesized by 4,4′-Diaminodiphenyl ether/2,2′-Bis (trifluoromethyl)-4,4′-diaminophenyl ether and Their Properties
title_fullStr PAI Materials Synthesized by 4,4′-Diaminodiphenyl ether/2,2′-Bis (trifluoromethyl)-4,4′-diaminophenyl ether and Their Properties
title_full_unstemmed PAI Materials Synthesized by 4,4′-Diaminodiphenyl ether/2,2′-Bis (trifluoromethyl)-4,4′-diaminophenyl ether and Their Properties
title_short PAI Materials Synthesized by 4,4′-Diaminodiphenyl ether/2,2′-Bis (trifluoromethyl)-4,4′-diaminophenyl ether and Their Properties
title_sort pai materials synthesized by 4,4′-diaminodiphenyl ether/2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether and their properties
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585165/
https://www.ncbi.nlm.nih.gov/pubmed/34771902
http://dx.doi.org/10.3390/ma14216376
work_keys_str_mv AT yanghaiyang paimaterialssynthesizedby44diaminodiphenylether22bistrifluoromethyl44diaminophenyletherandtheirproperties
AT liduxin paimaterialssynthesizedby44diaminodiphenylether22bistrifluoromethyl44diaminophenyletherandtheirproperties
AT yangjun paimaterialssynthesizedby44diaminodiphenylether22bistrifluoromethyl44diaminophenyletherandtheirproperties
AT wangjin paimaterialssynthesizedby44diaminodiphenylether22bistrifluoromethyl44diaminophenyletherandtheirproperties
AT ganshunchang paimaterialssynthesizedby44diaminodiphenylether22bistrifluoromethyl44diaminophenyletherandtheirproperties