Cargando…
Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process
Binary Iron selenide (FeSe) thin films have been widely studied for years to unveil the high temperature superconductivity in iron-based superconductors. However, the origin of superconducting transition in this unconventional system is still under debate and worth deep investigations. In the presen...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585248/ https://www.ncbi.nlm.nih.gov/pubmed/34771910 http://dx.doi.org/10.3390/ma14216383 |
_version_ | 1784597645075939328 |
---|---|
author | Cao, Zhiqiang Chen, Longqing Cheng, Zhenxiang Qiu, Wenbin |
author_facet | Cao, Zhiqiang Chen, Longqing Cheng, Zhenxiang Qiu, Wenbin |
author_sort | Cao, Zhiqiang |
collection | PubMed |
description | Binary Iron selenide (FeSe) thin films have been widely studied for years to unveil the high temperature superconductivity in iron-based superconductors. However, the origin of superconducting transition in this unconventional system is still under debate and worth deep investigations. In the present work, the transition from insulator to superconductor was achieved in non-superconducting FeSe ultrathin films (~8 nm) grown on calcium fluoride substrates via a simple in-situ Mg-coating by a pulsed laser deposition technique. The Mg-coated FeSe film with an optimized amount of Mg exhibited a superconducting critical temperature as 9.7 K and an upper critical field as 30.9 T. Through systematic characterizations on phase identification, carrier transport behavior and high-resolution microstructural features, the revival of superconductivity in FeSe ultrathin films is mostly attributed to the highly crystallized FeSe and extra electron doping received from external Mg-coating process. Although the top few FeSe layers are incorporated with Mg, most FeSe layers are intact and protected by a stable magnesium oxide layer. This work provides a new strategy to induce superconductivity in FeSe films with non-superconducting behavior, which might contribute to a more comprehensive understanding of iron-based superconductivity and the benefit to downstream applications such as magnetic resonance imaging, high-field magnets and electrical cables. |
format | Online Article Text |
id | pubmed-8585248 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85852482021-11-12 Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process Cao, Zhiqiang Chen, Longqing Cheng, Zhenxiang Qiu, Wenbin Materials (Basel) Article Binary Iron selenide (FeSe) thin films have been widely studied for years to unveil the high temperature superconductivity in iron-based superconductors. However, the origin of superconducting transition in this unconventional system is still under debate and worth deep investigations. In the present work, the transition from insulator to superconductor was achieved in non-superconducting FeSe ultrathin films (~8 nm) grown on calcium fluoride substrates via a simple in-situ Mg-coating by a pulsed laser deposition technique. The Mg-coated FeSe film with an optimized amount of Mg exhibited a superconducting critical temperature as 9.7 K and an upper critical field as 30.9 T. Through systematic characterizations on phase identification, carrier transport behavior and high-resolution microstructural features, the revival of superconductivity in FeSe ultrathin films is mostly attributed to the highly crystallized FeSe and extra electron doping received from external Mg-coating process. Although the top few FeSe layers are incorporated with Mg, most FeSe layers are intact and protected by a stable magnesium oxide layer. This work provides a new strategy to induce superconductivity in FeSe films with non-superconducting behavior, which might contribute to a more comprehensive understanding of iron-based superconductivity and the benefit to downstream applications such as magnetic resonance imaging, high-field magnets and electrical cables. MDPI 2021-10-25 /pmc/articles/PMC8585248/ /pubmed/34771910 http://dx.doi.org/10.3390/ma14216383 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cao, Zhiqiang Chen, Longqing Cheng, Zhenxiang Qiu, Wenbin Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process |
title | Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process |
title_full | Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process |
title_fullStr | Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process |
title_full_unstemmed | Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process |
title_short | Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process |
title_sort | induced superconducting transition in ultra-thin iron-selenide films by a mg-coating process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585248/ https://www.ncbi.nlm.nih.gov/pubmed/34771910 http://dx.doi.org/10.3390/ma14216383 |
work_keys_str_mv | AT caozhiqiang inducedsuperconductingtransitioninultrathinironselenidefilmsbyamgcoatingprocess AT chenlongqing inducedsuperconductingtransitioninultrathinironselenidefilmsbyamgcoatingprocess AT chengzhenxiang inducedsuperconductingtransitioninultrathinironselenidefilmsbyamgcoatingprocess AT qiuwenbin inducedsuperconductingtransitioninultrathinironselenidefilmsbyamgcoatingprocess |