Cargando…

Diamond Coating Reduces Nuclear Fuel Rod Corrosion at Accidental Temperatures: The Role of Surface Electrochemistry and Semiconductivity

If we want to decrease the probability of accidents in nuclear reactors, we must control the surface corrosion of the fuel rods. In this work we used a diamond coating containing <60% diamond and >40% sp(2) “soft” carbon phase to protect Zr alloy fuel rods (ZIRLO(®)) against corrosion in steam...

Descripción completa

Detalles Bibliográficos
Autores principales: Celbová, Lucie, Ashcheulov, Petr, Klimša, Ladislav, Kopeček, Jaromír, Aubrechtová Dragounová, Kateřina, Luštinec, Jakub, Macák, Jan, Škoda, Radek, Kratochvílová, Irena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585298/
https://www.ncbi.nlm.nih.gov/pubmed/34771840
http://dx.doi.org/10.3390/ma14216315
_version_ 1784597656880807936
author Celbová, Lucie
Ashcheulov, Petr
Klimša, Ladislav
Kopeček, Jaromír
Aubrechtová Dragounová, Kateřina
Luštinec, Jakub
Macák, Jan
Škoda, Radek
Kratochvílová, Irena
author_facet Celbová, Lucie
Ashcheulov, Petr
Klimša, Ladislav
Kopeček, Jaromír
Aubrechtová Dragounová, Kateřina
Luštinec, Jakub
Macák, Jan
Škoda, Radek
Kratochvílová, Irena
author_sort Celbová, Lucie
collection PubMed
description If we want to decrease the probability of accidents in nuclear reactors, we must control the surface corrosion of the fuel rods. In this work we used a diamond coating containing <60% diamond and >40% sp(2) “soft” carbon phase to protect Zr alloy fuel rods (ZIRLO(®)) against corrosion in steam at temperatures from 850 °C to 1000 °C. A diamond coating was grown in a pulse microwave plasma chemical vapor deposition apparatus and made a strong barrier against hydrogen uptake into ZIRLO(®) (ZIRLO) under all tested conditions. The coating also reduced ZIRLO corrosion in hot steam at 850 °C (for 60 min) and at 900 °C (for 30 min). However, the protective ability of the diamond coating decreased after 20 min in 1000 °C hot steam. The main goal of this work was to explain how diamond and sp(2) “soft” carbon affect the ZIRLO fuel rod surface electrochemistry and semi conductivity and how these parameters influence the hot steam ZIRLO corrosion process. To achieve this goal, theoretical and experimental methods (scanning electron microscopy, Raman spectroscopy, electrochemical impedance spectroscopy, carrier gas hot extraction, oxidation kinetics, ab initio calculations) were applied. Deep understanding of ZIRLO surface processes and states enable us to reduce accidental temperature corrosion in nuclear reactors.
format Online
Article
Text
id pubmed-8585298
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85852982021-11-12 Diamond Coating Reduces Nuclear Fuel Rod Corrosion at Accidental Temperatures: The Role of Surface Electrochemistry and Semiconductivity Celbová, Lucie Ashcheulov, Petr Klimša, Ladislav Kopeček, Jaromír Aubrechtová Dragounová, Kateřina Luštinec, Jakub Macák, Jan Škoda, Radek Kratochvílová, Irena Materials (Basel) Article If we want to decrease the probability of accidents in nuclear reactors, we must control the surface corrosion of the fuel rods. In this work we used a diamond coating containing <60% diamond and >40% sp(2) “soft” carbon phase to protect Zr alloy fuel rods (ZIRLO(®)) against corrosion in steam at temperatures from 850 °C to 1000 °C. A diamond coating was grown in a pulse microwave plasma chemical vapor deposition apparatus and made a strong barrier against hydrogen uptake into ZIRLO(®) (ZIRLO) under all tested conditions. The coating also reduced ZIRLO corrosion in hot steam at 850 °C (for 60 min) and at 900 °C (for 30 min). However, the protective ability of the diamond coating decreased after 20 min in 1000 °C hot steam. The main goal of this work was to explain how diamond and sp(2) “soft” carbon affect the ZIRLO fuel rod surface electrochemistry and semi conductivity and how these parameters influence the hot steam ZIRLO corrosion process. To achieve this goal, theoretical and experimental methods (scanning electron microscopy, Raman spectroscopy, electrochemical impedance spectroscopy, carrier gas hot extraction, oxidation kinetics, ab initio calculations) were applied. Deep understanding of ZIRLO surface processes and states enable us to reduce accidental temperature corrosion in nuclear reactors. MDPI 2021-10-22 /pmc/articles/PMC8585298/ /pubmed/34771840 http://dx.doi.org/10.3390/ma14216315 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Celbová, Lucie
Ashcheulov, Petr
Klimša, Ladislav
Kopeček, Jaromír
Aubrechtová Dragounová, Kateřina
Luštinec, Jakub
Macák, Jan
Škoda, Radek
Kratochvílová, Irena
Diamond Coating Reduces Nuclear Fuel Rod Corrosion at Accidental Temperatures: The Role of Surface Electrochemistry and Semiconductivity
title Diamond Coating Reduces Nuclear Fuel Rod Corrosion at Accidental Temperatures: The Role of Surface Electrochemistry and Semiconductivity
title_full Diamond Coating Reduces Nuclear Fuel Rod Corrosion at Accidental Temperatures: The Role of Surface Electrochemistry and Semiconductivity
title_fullStr Diamond Coating Reduces Nuclear Fuel Rod Corrosion at Accidental Temperatures: The Role of Surface Electrochemistry and Semiconductivity
title_full_unstemmed Diamond Coating Reduces Nuclear Fuel Rod Corrosion at Accidental Temperatures: The Role of Surface Electrochemistry and Semiconductivity
title_short Diamond Coating Reduces Nuclear Fuel Rod Corrosion at Accidental Temperatures: The Role of Surface Electrochemistry and Semiconductivity
title_sort diamond coating reduces nuclear fuel rod corrosion at accidental temperatures: the role of surface electrochemistry and semiconductivity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585298/
https://www.ncbi.nlm.nih.gov/pubmed/34771840
http://dx.doi.org/10.3390/ma14216315
work_keys_str_mv AT celbovalucie diamondcoatingreducesnuclearfuelrodcorrosionataccidentaltemperaturestheroleofsurfaceelectrochemistryandsemiconductivity
AT ashcheulovpetr diamondcoatingreducesnuclearfuelrodcorrosionataccidentaltemperaturestheroleofsurfaceelectrochemistryandsemiconductivity
AT klimsaladislav diamondcoatingreducesnuclearfuelrodcorrosionataccidentaltemperaturestheroleofsurfaceelectrochemistryandsemiconductivity
AT kopecekjaromir diamondcoatingreducesnuclearfuelrodcorrosionataccidentaltemperaturestheroleofsurfaceelectrochemistryandsemiconductivity
AT aubrechtovadragounovakaterina diamondcoatingreducesnuclearfuelrodcorrosionataccidentaltemperaturestheroleofsurfaceelectrochemistryandsemiconductivity
AT lustinecjakub diamondcoatingreducesnuclearfuelrodcorrosionataccidentaltemperaturestheroleofsurfaceelectrochemistryandsemiconductivity
AT macakjan diamondcoatingreducesnuclearfuelrodcorrosionataccidentaltemperaturestheroleofsurfaceelectrochemistryandsemiconductivity
AT skodaradek diamondcoatingreducesnuclearfuelrodcorrosionataccidentaltemperaturestheroleofsurfaceelectrochemistryandsemiconductivity
AT kratochvilovairena diamondcoatingreducesnuclearfuelrodcorrosionataccidentaltemperaturestheroleofsurfaceelectrochemistryandsemiconductivity