Cargando…
On Random Subspace Optimization-Based Hybrid Computing Models Predicting the California Bearing Ratio of Soils
The California Bearing Ratio (CBR) is an important index for evaluating the bearing capacity of pavement subgrade materials. In this research, random subspace optimization-based hybrid computing models were trained and developed for the prediction of the CBR of soil. Three models were developed, nam...
Autores principales: | Trong, Duong Kien, Pham, Binh Thai, Jalal, Fazal E., Iqbal, Mudassir, Roussis, Panayiotis C., Mamou, Anna, Ferentinou, Maria, Vu, Dung Quang, Duc Dam, Nguyen, Tran, Quoc Anh, Asteris, Panagiotis G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585299/ https://www.ncbi.nlm.nih.gov/pubmed/34772040 http://dx.doi.org/10.3390/ma14216516 |
Ejemplares similares
-
Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials
por: Asteris, Panagiotis G., et al.
Publicado: (2017) -
Incorporating Heterogeneous Features into the Random Subspace Method for Bearing Fault Diagnosis
por: Chu, Yan, et al.
Publicado: (2023) -
Subspace-by-subspace preconditioners for structured linear systems
por: Daydé, M J, et al.
Publicado: (1998) -
Invariant subspaces
por: Radjavi, Heydar, et al.
Publicado: (1973) -
Radiation Synthesis of Selenium Nanoparticles Capped with β-Glucan and Its Immunostimulant Activity in Cytoxan-Induced Immunosuppressed Mice
por: Dung, Nguyen Thi, et al.
Publicado: (2021)