Cargando…
Experimental and Finite Element Analysis of the Tensile Behavior of Architectured Cu-Al Composite Wires
The present study investigates, experimentally and numerically, the tensile behavior of copper-clad aluminum composite wires. Two fiber-matrix configurations, the conventional Al-core/Cu-case and a so-called architectured wire with a continuous copper network across the cross-section, were considere...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585354/ https://www.ncbi.nlm.nih.gov/pubmed/34771831 http://dx.doi.org/10.3390/ma14216305 |
_version_ | 1784597669507760128 |
---|---|
author | Dashti, Alireza Keller, Clément Vieille, Benoit Guillet, Alain Bouvet, Christophe |
author_facet | Dashti, Alireza Keller, Clément Vieille, Benoit Guillet, Alain Bouvet, Christophe |
author_sort | Dashti, Alireza |
collection | PubMed |
description | The present study investigates, experimentally and numerically, the tensile behavior of copper-clad aluminum composite wires. Two fiber-matrix configurations, the conventional Al-core/Cu-case and a so-called architectured wire with a continuous copper network across the cross-section, were considered. Two different fiber arrangements with 61 or 22 aluminum fibers were employed for the architectured samples. Experimentally, tensile tests on the two types of composites show that the flow stress of architectured configurations is markedly higher than that of the linear rule of mixtures’ prediction. Transverse stress components and processing-induced residual stresses are then studied via numerical simulations to assess their potential effect on this enhanced strength. A set of elastic-domain and elastoplastic simulations were performed to account for the influence of Young’s modulus and volume fraction of each phase on the magnitude of transverse stresses and how theses stresses contribute to the axial stress-strain behavior. Besides, residual stress fields of different magnitude with literature-based distributions expected for cold-drawn wires were defined. The findings suggest that the improved yield strength of architectured Cu-Al wires cannot be attributed to the weak transverse stresses developed during tensile testing, while there are compelling implications regarding the strengthening effect originating from the residual stress profile. Finally, the results are discussed and concluded with a focus on the role of architecture and residual stresses. |
format | Online Article Text |
id | pubmed-8585354 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85853542021-11-12 Experimental and Finite Element Analysis of the Tensile Behavior of Architectured Cu-Al Composite Wires Dashti, Alireza Keller, Clément Vieille, Benoit Guillet, Alain Bouvet, Christophe Materials (Basel) Article The present study investigates, experimentally and numerically, the tensile behavior of copper-clad aluminum composite wires. Two fiber-matrix configurations, the conventional Al-core/Cu-case and a so-called architectured wire with a continuous copper network across the cross-section, were considered. Two different fiber arrangements with 61 or 22 aluminum fibers were employed for the architectured samples. Experimentally, tensile tests on the two types of composites show that the flow stress of architectured configurations is markedly higher than that of the linear rule of mixtures’ prediction. Transverse stress components and processing-induced residual stresses are then studied via numerical simulations to assess their potential effect on this enhanced strength. A set of elastic-domain and elastoplastic simulations were performed to account for the influence of Young’s modulus and volume fraction of each phase on the magnitude of transverse stresses and how theses stresses contribute to the axial stress-strain behavior. Besides, residual stress fields of different magnitude with literature-based distributions expected for cold-drawn wires were defined. The findings suggest that the improved yield strength of architectured Cu-Al wires cannot be attributed to the weak transverse stresses developed during tensile testing, while there are compelling implications regarding the strengthening effect originating from the residual stress profile. Finally, the results are discussed and concluded with a focus on the role of architecture and residual stresses. MDPI 2021-10-22 /pmc/articles/PMC8585354/ /pubmed/34771831 http://dx.doi.org/10.3390/ma14216305 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dashti, Alireza Keller, Clément Vieille, Benoit Guillet, Alain Bouvet, Christophe Experimental and Finite Element Analysis of the Tensile Behavior of Architectured Cu-Al Composite Wires |
title | Experimental and Finite Element Analysis of the Tensile Behavior of Architectured Cu-Al Composite Wires |
title_full | Experimental and Finite Element Analysis of the Tensile Behavior of Architectured Cu-Al Composite Wires |
title_fullStr | Experimental and Finite Element Analysis of the Tensile Behavior of Architectured Cu-Al Composite Wires |
title_full_unstemmed | Experimental and Finite Element Analysis of the Tensile Behavior of Architectured Cu-Al Composite Wires |
title_short | Experimental and Finite Element Analysis of the Tensile Behavior of Architectured Cu-Al Composite Wires |
title_sort | experimental and finite element analysis of the tensile behavior of architectured cu-al composite wires |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585354/ https://www.ncbi.nlm.nih.gov/pubmed/34771831 http://dx.doi.org/10.3390/ma14216305 |
work_keys_str_mv | AT dashtialireza experimentalandfiniteelementanalysisofthetensilebehaviorofarchitecturedcualcompositewires AT kellerclement experimentalandfiniteelementanalysisofthetensilebehaviorofarchitecturedcualcompositewires AT vieillebenoit experimentalandfiniteelementanalysisofthetensilebehaviorofarchitecturedcualcompositewires AT guilletalain experimentalandfiniteelementanalysisofthetensilebehaviorofarchitecturedcualcompositewires AT bouvetchristophe experimentalandfiniteelementanalysisofthetensilebehaviorofarchitecturedcualcompositewires |