Cargando…

DFT-Based Studies on Carbon Adsorption on the wz-GaN Surfaces and the Influence of Point Defects on the Stability of the Diamond–GaN Interfaces

Integration of diamond with GaN-based high-electron-mobility transistors improves thermal management, influencing the reliability, performance, and lifetime of GaN-based devices. The current GaN-on-diamond integration technology requires precise interface engineering and appropriate interfacial laye...

Descripción completa

Detalles Bibliográficos
Autores principales: Sznajder, Malgorzata, Hrytsak, Roman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585404/
https://www.ncbi.nlm.nih.gov/pubmed/34772058
http://dx.doi.org/10.3390/ma14216532
Descripción
Sumario:Integration of diamond with GaN-based high-electron-mobility transistors improves thermal management, influencing the reliability, performance, and lifetime of GaN-based devices. The current GaN-on-diamond integration technology requires precise interface engineering and appropriate interfacial layers. In this respect, we performed first principles calculation on the stability of diamond–GaN interfaces in the framework of density functional theory. Initially, some stable adsorption sites of C atoms were found on the Ga- and N-terminated surfaces that enabled the creation of a flat carbon monolayer. Following this, a model of diamond–GaN heterojunction with the growth direction [111] was constructed based on carbon adsorption results on GaN{0001} surfaces. Finally, we demonstrate the ways of improving the energetic stability of diamond–GaN interfaces by means of certain reconstructions induced by substitutional dopants present in the topmost GaN substrate’s layer.