Cargando…
DFT-Based Studies on Carbon Adsorption on the wz-GaN Surfaces and the Influence of Point Defects on the Stability of the Diamond–GaN Interfaces
Integration of diamond with GaN-based high-electron-mobility transistors improves thermal management, influencing the reliability, performance, and lifetime of GaN-based devices. The current GaN-on-diamond integration technology requires precise interface engineering and appropriate interfacial laye...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585404/ https://www.ncbi.nlm.nih.gov/pubmed/34772058 http://dx.doi.org/10.3390/ma14216532 |
_version_ | 1784597681551704064 |
---|---|
author | Sznajder, Malgorzata Hrytsak, Roman |
author_facet | Sznajder, Malgorzata Hrytsak, Roman |
author_sort | Sznajder, Malgorzata |
collection | PubMed |
description | Integration of diamond with GaN-based high-electron-mobility transistors improves thermal management, influencing the reliability, performance, and lifetime of GaN-based devices. The current GaN-on-diamond integration technology requires precise interface engineering and appropriate interfacial layers. In this respect, we performed first principles calculation on the stability of diamond–GaN interfaces in the framework of density functional theory. Initially, some stable adsorption sites of C atoms were found on the Ga- and N-terminated surfaces that enabled the creation of a flat carbon monolayer. Following this, a model of diamond–GaN heterojunction with the growth direction [111] was constructed based on carbon adsorption results on GaN{0001} surfaces. Finally, we demonstrate the ways of improving the energetic stability of diamond–GaN interfaces by means of certain reconstructions induced by substitutional dopants present in the topmost GaN substrate’s layer. |
format | Online Article Text |
id | pubmed-8585404 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85854042021-11-12 DFT-Based Studies on Carbon Adsorption on the wz-GaN Surfaces and the Influence of Point Defects on the Stability of the Diamond–GaN Interfaces Sznajder, Malgorzata Hrytsak, Roman Materials (Basel) Article Integration of diamond with GaN-based high-electron-mobility transistors improves thermal management, influencing the reliability, performance, and lifetime of GaN-based devices. The current GaN-on-diamond integration technology requires precise interface engineering and appropriate interfacial layers. In this respect, we performed first principles calculation on the stability of diamond–GaN interfaces in the framework of density functional theory. Initially, some stable adsorption sites of C atoms were found on the Ga- and N-terminated surfaces that enabled the creation of a flat carbon monolayer. Following this, a model of diamond–GaN heterojunction with the growth direction [111] was constructed based on carbon adsorption results on GaN{0001} surfaces. Finally, we demonstrate the ways of improving the energetic stability of diamond–GaN interfaces by means of certain reconstructions induced by substitutional dopants present in the topmost GaN substrate’s layer. MDPI 2021-10-29 /pmc/articles/PMC8585404/ /pubmed/34772058 http://dx.doi.org/10.3390/ma14216532 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sznajder, Malgorzata Hrytsak, Roman DFT-Based Studies on Carbon Adsorption on the wz-GaN Surfaces and the Influence of Point Defects on the Stability of the Diamond–GaN Interfaces |
title | DFT-Based Studies on Carbon Adsorption on the wz-GaN Surfaces and the Influence of Point Defects on the Stability of the Diamond–GaN Interfaces |
title_full | DFT-Based Studies on Carbon Adsorption on the wz-GaN Surfaces and the Influence of Point Defects on the Stability of the Diamond–GaN Interfaces |
title_fullStr | DFT-Based Studies on Carbon Adsorption on the wz-GaN Surfaces and the Influence of Point Defects on the Stability of the Diamond–GaN Interfaces |
title_full_unstemmed | DFT-Based Studies on Carbon Adsorption on the wz-GaN Surfaces and the Influence of Point Defects on the Stability of the Diamond–GaN Interfaces |
title_short | DFT-Based Studies on Carbon Adsorption on the wz-GaN Surfaces and the Influence of Point Defects on the Stability of the Diamond–GaN Interfaces |
title_sort | dft-based studies on carbon adsorption on the wz-gan surfaces and the influence of point defects on the stability of the diamond–gan interfaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585404/ https://www.ncbi.nlm.nih.gov/pubmed/34772058 http://dx.doi.org/10.3390/ma14216532 |
work_keys_str_mv | AT sznajdermalgorzata dftbasedstudiesoncarbonadsorptiononthewzgansurfacesandtheinfluenceofpointdefectsonthestabilityofthediamondganinterfaces AT hrytsakroman dftbasedstudiesoncarbonadsorptiononthewzgansurfacesandtheinfluenceofpointdefectsonthestabilityofthediamondganinterfaces |