Cargando…
Enzymatic Activity and Physicochemical Properties of Soil Profiles of Luvisols
Most studies on soil enzymes are focused on the upper horizons of the soil profile, even though they transform the soil organic matter at every depth of the soil profile. The aim of this work was to investigate the distribution of β-glucosidase (GLU), nitrate reductase (NR), urease (UR), phosphatase...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585432/ https://www.ncbi.nlm.nih.gov/pubmed/34771889 http://dx.doi.org/10.3390/ma14216364 |
_version_ | 1784597688355913728 |
---|---|
author | Piotrowska-Długosz, Anna Kobierski, Mirosław Długosz, Jacek |
author_facet | Piotrowska-Długosz, Anna Kobierski, Mirosław Długosz, Jacek |
author_sort | Piotrowska-Długosz, Anna |
collection | PubMed |
description | Most studies on soil enzymes are focused on the upper horizons of the soil profile, even though they transform the soil organic matter at every depth of the soil profile. The aim of this work was to investigate the distribution of β-glucosidase (GLU), nitrate reductase (NR), urease (UR), phosphatase (PHA), dehydrogenase (DHA) and catalase (CAT) activity through 14 trunked soil profiles of the Luvisols formed from a glacial till. The content of microbial biomass carbon (MBC) as well as physicochemical properties such as organic carbon (C(ORG)), total nitrogen (N(TOT)), available P, K and Mg, soil density and porosity, pH in KCl and fractional composition were also studied. In general, enzymatic activity was highest in the top 30 cm layer of the profiles and decreased progressively towards the deeper horizons. The exceptions were the NR activity, which was active only in the Ap horizon and whose activity decreased sharply to nearly zero in the Bt horizon and parent rock, and the PHA activity, which was highly active even in the parent rock depth. The decreased availability of carbon and nutrients was the main driver of decreases in microbial abundance and enzymatic activity with depth. The enzymatic activity, when expressed on a C(ORG) and MBC basis, behaves differently compared to the activity expressed on a soil mass basis. The activity decreased (NR), increased (PHA, UR), showed no clear pattern (GLU) or the changes were not significant (DHA, CAT). The content of C(ORG), N(TOT), K and P(AVAIL) generally decreased with depth, while for Mg, there was no clear direction in the profile distribution. Future studies to characterize the substrate distribution within the soil profile and enzyme stability will provide further insight into the controls on nutrient cycling and related enzymes throughout the soil profiles. |
format | Online Article Text |
id | pubmed-8585432 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85854322021-11-12 Enzymatic Activity and Physicochemical Properties of Soil Profiles of Luvisols Piotrowska-Długosz, Anna Kobierski, Mirosław Długosz, Jacek Materials (Basel) Article Most studies on soil enzymes are focused on the upper horizons of the soil profile, even though they transform the soil organic matter at every depth of the soil profile. The aim of this work was to investigate the distribution of β-glucosidase (GLU), nitrate reductase (NR), urease (UR), phosphatase (PHA), dehydrogenase (DHA) and catalase (CAT) activity through 14 trunked soil profiles of the Luvisols formed from a glacial till. The content of microbial biomass carbon (MBC) as well as physicochemical properties such as organic carbon (C(ORG)), total nitrogen (N(TOT)), available P, K and Mg, soil density and porosity, pH in KCl and fractional composition were also studied. In general, enzymatic activity was highest in the top 30 cm layer of the profiles and decreased progressively towards the deeper horizons. The exceptions were the NR activity, which was active only in the Ap horizon and whose activity decreased sharply to nearly zero in the Bt horizon and parent rock, and the PHA activity, which was highly active even in the parent rock depth. The decreased availability of carbon and nutrients was the main driver of decreases in microbial abundance and enzymatic activity with depth. The enzymatic activity, when expressed on a C(ORG) and MBC basis, behaves differently compared to the activity expressed on a soil mass basis. The activity decreased (NR), increased (PHA, UR), showed no clear pattern (GLU) or the changes were not significant (DHA, CAT). The content of C(ORG), N(TOT), K and P(AVAIL) generally decreased with depth, while for Mg, there was no clear direction in the profile distribution. Future studies to characterize the substrate distribution within the soil profile and enzyme stability will provide further insight into the controls on nutrient cycling and related enzymes throughout the soil profiles. MDPI 2021-10-24 /pmc/articles/PMC8585432/ /pubmed/34771889 http://dx.doi.org/10.3390/ma14216364 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Piotrowska-Długosz, Anna Kobierski, Mirosław Długosz, Jacek Enzymatic Activity and Physicochemical Properties of Soil Profiles of Luvisols |
title | Enzymatic Activity and Physicochemical Properties of Soil Profiles of Luvisols |
title_full | Enzymatic Activity and Physicochemical Properties of Soil Profiles of Luvisols |
title_fullStr | Enzymatic Activity and Physicochemical Properties of Soil Profiles of Luvisols |
title_full_unstemmed | Enzymatic Activity and Physicochemical Properties of Soil Profiles of Luvisols |
title_short | Enzymatic Activity and Physicochemical Properties of Soil Profiles of Luvisols |
title_sort | enzymatic activity and physicochemical properties of soil profiles of luvisols |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585432/ https://www.ncbi.nlm.nih.gov/pubmed/34771889 http://dx.doi.org/10.3390/ma14216364 |
work_keys_str_mv | AT piotrowskadługoszanna enzymaticactivityandphysicochemicalpropertiesofsoilprofilesofluvisols AT kobierskimirosław enzymaticactivityandphysicochemicalpropertiesofsoilprofilesofluvisols AT długoszjacek enzymaticactivityandphysicochemicalpropertiesofsoilprofilesofluvisols |