Cargando…
Synthesis and Effect of the Structure of Bithienyl-Terminated Surfactants for Dielectric Layer Modification in Organic Transistor
A series of bithienyl-terminated surfactants with various alkyl chain lengths (from C8 to C13) and phosphono or chlorodimethylsilyl anchoring groups were synthesized by palladium-catalyzed hydrophosphonation, or platinum-catalyzed hydrosilylation as a key step. Surfactants were tested in pentacene o...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585473/ https://www.ncbi.nlm.nih.gov/pubmed/34771870 http://dx.doi.org/10.3390/ma14216345 |
Sumario: | A series of bithienyl-terminated surfactants with various alkyl chain lengths (from C8 to C13) and phosphono or chlorodimethylsilyl anchoring groups were synthesized by palladium-catalyzed hydrophosphonation, or platinum-catalyzed hydrosilylation as a key step. Surfactants were tested in pentacene or α-sexithiophene-based organic field-effect transistors (OFETs) for the modification of the dielectric surface. The studied surfactants increased the effective mobility of the α-sexithiophene-based device by up to one order of magnitude. The length of alkyl chain showed to be significant for the pentacene-based device, as the effective mobility only increased in the case of dielectric modification with bithienylundecylphosphonic acid. AFM allowed a better understanding of the morphology of semiconductors on bare SiO(2) and surfaces treated with bithienylundecylphosphonic acid. |
---|