Cargando…
Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans
Populations used to create warfarin dose prediction algorithms largely lacked participants reporting Hispanic or Latino ethnicity. While previous research suggests nonlinear modeling improves warfarin dose prediction, this research has mainly focused on populations with primarily European ancestry....
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585774/ https://www.ncbi.nlm.nih.gov/pubmed/34776967 http://dx.doi.org/10.3389/fphar.2021.749786 |
_version_ | 1784597752855920640 |
---|---|
author | Steiner, Heidi E. Giles, Jason B. Patterson, Hayley Knight Feng, Jianglin El Rouby, Nihal Claudio, Karla Marcatto, Leiliane Rodrigues Tavares, Leticia Camargo Galvez, Jubby Marcela Calderon-Ospina, Carlos-Alberto Sun, Xiaoxiao Hutz, Mara H. Scott, Stuart A. Cavallari, Larisa H. Fonseca-Mendoza, Dora Janeth Duconge, Jorge Botton, Mariana Rodrigues Santos, Paulo Caleb Junior Lima Karnes, Jason H. |
author_facet | Steiner, Heidi E. Giles, Jason B. Patterson, Hayley Knight Feng, Jianglin El Rouby, Nihal Claudio, Karla Marcatto, Leiliane Rodrigues Tavares, Leticia Camargo Galvez, Jubby Marcela Calderon-Ospina, Carlos-Alberto Sun, Xiaoxiao Hutz, Mara H. Scott, Stuart A. Cavallari, Larisa H. Fonseca-Mendoza, Dora Janeth Duconge, Jorge Botton, Mariana Rodrigues Santos, Paulo Caleb Junior Lima Karnes, Jason H. |
author_sort | Steiner, Heidi E. |
collection | PubMed |
description | Populations used to create warfarin dose prediction algorithms largely lacked participants reporting Hispanic or Latino ethnicity. While previous research suggests nonlinear modeling improves warfarin dose prediction, this research has mainly focused on populations with primarily European ancestry. We compare the accuracy of stable warfarin dose prediction using linear and nonlinear machine learning models in a large cohort enriched for US Latinos and Latin Americans (ULLA). Each model was tested using the same variables as published by the International Warfarin Pharmacogenetics Consortium (IWPC) and using an expanded set of variables including ethnicity and warfarin indication. We utilized a multiple linear regression model and three nonlinear regression models: Bayesian Additive Regression Trees, Multivariate Adaptive Regression Splines, and Support Vector Regression. We compared each model’s ability to predict stable warfarin dose within 20% of actual stable dose, confirming trained models in a 30% testing dataset with 100 rounds of resampling. In all patients (n = 7,030), inclusion of additional predictor variables led to a small but significant improvement in prediction of dose relative to the IWPC algorithm (47.8 versus 46.7% in IWPC, p = 1.43 × 10(−15)). Nonlinear models using IWPC variables did not significantly improve prediction of dose over the linear IWPC algorithm. In ULLA patients alone (n = 1,734), IWPC performed similarly to all other linear and nonlinear pharmacogenetic algorithms. Our results reinforce the validity of IWPC in a large, ethnically diverse population and suggest that additional variables that capture warfarin dose variability may improve warfarin dose prediction algorithms. |
format | Online Article Text |
id | pubmed-8585774 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85857742021-11-13 Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans Steiner, Heidi E. Giles, Jason B. Patterson, Hayley Knight Feng, Jianglin El Rouby, Nihal Claudio, Karla Marcatto, Leiliane Rodrigues Tavares, Leticia Camargo Galvez, Jubby Marcela Calderon-Ospina, Carlos-Alberto Sun, Xiaoxiao Hutz, Mara H. Scott, Stuart A. Cavallari, Larisa H. Fonseca-Mendoza, Dora Janeth Duconge, Jorge Botton, Mariana Rodrigues Santos, Paulo Caleb Junior Lima Karnes, Jason H. Front Pharmacol Pharmacology Populations used to create warfarin dose prediction algorithms largely lacked participants reporting Hispanic or Latino ethnicity. While previous research suggests nonlinear modeling improves warfarin dose prediction, this research has mainly focused on populations with primarily European ancestry. We compare the accuracy of stable warfarin dose prediction using linear and nonlinear machine learning models in a large cohort enriched for US Latinos and Latin Americans (ULLA). Each model was tested using the same variables as published by the International Warfarin Pharmacogenetics Consortium (IWPC) and using an expanded set of variables including ethnicity and warfarin indication. We utilized a multiple linear regression model and three nonlinear regression models: Bayesian Additive Regression Trees, Multivariate Adaptive Regression Splines, and Support Vector Regression. We compared each model’s ability to predict stable warfarin dose within 20% of actual stable dose, confirming trained models in a 30% testing dataset with 100 rounds of resampling. In all patients (n = 7,030), inclusion of additional predictor variables led to a small but significant improvement in prediction of dose relative to the IWPC algorithm (47.8 versus 46.7% in IWPC, p = 1.43 × 10(−15)). Nonlinear models using IWPC variables did not significantly improve prediction of dose over the linear IWPC algorithm. In ULLA patients alone (n = 1,734), IWPC performed similarly to all other linear and nonlinear pharmacogenetic algorithms. Our results reinforce the validity of IWPC in a large, ethnically diverse population and suggest that additional variables that capture warfarin dose variability may improve warfarin dose prediction algorithms. Frontiers Media S.A. 2021-10-29 /pmc/articles/PMC8585774/ /pubmed/34776967 http://dx.doi.org/10.3389/fphar.2021.749786 Text en Copyright © 2021 Steiner, Giles, Patterson, Feng, El Rouby, Claudio, Marcatto, Tavares, Galvez, Calderon-Ospina, Sun, Hutz, Scott, Cavallari, Fonseca-Mendoza, Duconge, Botton, Santos and Karnes. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Steiner, Heidi E. Giles, Jason B. Patterson, Hayley Knight Feng, Jianglin El Rouby, Nihal Claudio, Karla Marcatto, Leiliane Rodrigues Tavares, Leticia Camargo Galvez, Jubby Marcela Calderon-Ospina, Carlos-Alberto Sun, Xiaoxiao Hutz, Mara H. Scott, Stuart A. Cavallari, Larisa H. Fonseca-Mendoza, Dora Janeth Duconge, Jorge Botton, Mariana Rodrigues Santos, Paulo Caleb Junior Lima Karnes, Jason H. Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans |
title | Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans |
title_full | Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans |
title_fullStr | Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans |
title_full_unstemmed | Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans |
title_short | Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans |
title_sort | machine learning for prediction of stable warfarin dose in us latinos and latin americans |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585774/ https://www.ncbi.nlm.nih.gov/pubmed/34776967 http://dx.doi.org/10.3389/fphar.2021.749786 |
work_keys_str_mv | AT steinerheidie machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT gilesjasonb machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT pattersonhayleyknight machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT fengjianglin machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT elroubynihal machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT claudiokarla machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT marcattoleilianerodrigues machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT tavaresleticiacamargo machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT galvezjubbymarcela machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT calderonospinacarlosalberto machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT sunxiaoxiao machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT hutzmarah machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT scottstuarta machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT cavallarilarisah machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT fonsecamendozadorajaneth machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT ducongejorge machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT bottonmarianarodrigues machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT santospaulocalebjuniorlima machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans AT karnesjasonh machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans |