Cargando…

Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans

Populations used to create warfarin dose prediction algorithms largely lacked participants reporting Hispanic or Latino ethnicity. While previous research suggests nonlinear modeling improves warfarin dose prediction, this research has mainly focused on populations with primarily European ancestry....

Descripción completa

Detalles Bibliográficos
Autores principales: Steiner, Heidi E., Giles, Jason B., Patterson, Hayley Knight, Feng, Jianglin, El Rouby, Nihal, Claudio, Karla, Marcatto, Leiliane Rodrigues, Tavares, Leticia Camargo, Galvez, Jubby Marcela, Calderon-Ospina, Carlos-Alberto, Sun, Xiaoxiao, Hutz, Mara H., Scott, Stuart A., Cavallari, Larisa H., Fonseca-Mendoza, Dora Janeth, Duconge, Jorge, Botton, Mariana Rodrigues, Santos, Paulo Caleb Junior Lima, Karnes, Jason H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585774/
https://www.ncbi.nlm.nih.gov/pubmed/34776967
http://dx.doi.org/10.3389/fphar.2021.749786
_version_ 1784597752855920640
author Steiner, Heidi E.
Giles, Jason B.
Patterson, Hayley Knight
Feng, Jianglin
El Rouby, Nihal
Claudio, Karla
Marcatto, Leiliane Rodrigues
Tavares, Leticia Camargo
Galvez, Jubby Marcela
Calderon-Ospina, Carlos-Alberto
Sun, Xiaoxiao
Hutz, Mara H.
Scott, Stuart A.
Cavallari, Larisa H.
Fonseca-Mendoza, Dora Janeth
Duconge, Jorge
Botton, Mariana Rodrigues
Santos, Paulo Caleb Junior Lima
Karnes, Jason H.
author_facet Steiner, Heidi E.
Giles, Jason B.
Patterson, Hayley Knight
Feng, Jianglin
El Rouby, Nihal
Claudio, Karla
Marcatto, Leiliane Rodrigues
Tavares, Leticia Camargo
Galvez, Jubby Marcela
Calderon-Ospina, Carlos-Alberto
Sun, Xiaoxiao
Hutz, Mara H.
Scott, Stuart A.
Cavallari, Larisa H.
Fonseca-Mendoza, Dora Janeth
Duconge, Jorge
Botton, Mariana Rodrigues
Santos, Paulo Caleb Junior Lima
Karnes, Jason H.
author_sort Steiner, Heidi E.
collection PubMed
description Populations used to create warfarin dose prediction algorithms largely lacked participants reporting Hispanic or Latino ethnicity. While previous research suggests nonlinear modeling improves warfarin dose prediction, this research has mainly focused on populations with primarily European ancestry. We compare the accuracy of stable warfarin dose prediction using linear and nonlinear machine learning models in a large cohort enriched for US Latinos and Latin Americans (ULLA). Each model was tested using the same variables as published by the International Warfarin Pharmacogenetics Consortium (IWPC) and using an expanded set of variables including ethnicity and warfarin indication. We utilized a multiple linear regression model and three nonlinear regression models: Bayesian Additive Regression Trees, Multivariate Adaptive Regression Splines, and Support Vector Regression. We compared each model’s ability to predict stable warfarin dose within 20% of actual stable dose, confirming trained models in a 30% testing dataset with 100 rounds of resampling. In all patients (n = 7,030), inclusion of additional predictor variables led to a small but significant improvement in prediction of dose relative to the IWPC algorithm (47.8 versus 46.7% in IWPC, p = 1.43 × 10(−15)). Nonlinear models using IWPC variables did not significantly improve prediction of dose over the linear IWPC algorithm. In ULLA patients alone (n = 1,734), IWPC performed similarly to all other linear and nonlinear pharmacogenetic algorithms. Our results reinforce the validity of IWPC in a large, ethnically diverse population and suggest that additional variables that capture warfarin dose variability may improve warfarin dose prediction algorithms.
format Online
Article
Text
id pubmed-8585774
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-85857742021-11-13 Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans Steiner, Heidi E. Giles, Jason B. Patterson, Hayley Knight Feng, Jianglin El Rouby, Nihal Claudio, Karla Marcatto, Leiliane Rodrigues Tavares, Leticia Camargo Galvez, Jubby Marcela Calderon-Ospina, Carlos-Alberto Sun, Xiaoxiao Hutz, Mara H. Scott, Stuart A. Cavallari, Larisa H. Fonseca-Mendoza, Dora Janeth Duconge, Jorge Botton, Mariana Rodrigues Santos, Paulo Caleb Junior Lima Karnes, Jason H. Front Pharmacol Pharmacology Populations used to create warfarin dose prediction algorithms largely lacked participants reporting Hispanic or Latino ethnicity. While previous research suggests nonlinear modeling improves warfarin dose prediction, this research has mainly focused on populations with primarily European ancestry. We compare the accuracy of stable warfarin dose prediction using linear and nonlinear machine learning models in a large cohort enriched for US Latinos and Latin Americans (ULLA). Each model was tested using the same variables as published by the International Warfarin Pharmacogenetics Consortium (IWPC) and using an expanded set of variables including ethnicity and warfarin indication. We utilized a multiple linear regression model and three nonlinear regression models: Bayesian Additive Regression Trees, Multivariate Adaptive Regression Splines, and Support Vector Regression. We compared each model’s ability to predict stable warfarin dose within 20% of actual stable dose, confirming trained models in a 30% testing dataset with 100 rounds of resampling. In all patients (n = 7,030), inclusion of additional predictor variables led to a small but significant improvement in prediction of dose relative to the IWPC algorithm (47.8 versus 46.7% in IWPC, p = 1.43 × 10(−15)). Nonlinear models using IWPC variables did not significantly improve prediction of dose over the linear IWPC algorithm. In ULLA patients alone (n = 1,734), IWPC performed similarly to all other linear and nonlinear pharmacogenetic algorithms. Our results reinforce the validity of IWPC in a large, ethnically diverse population and suggest that additional variables that capture warfarin dose variability may improve warfarin dose prediction algorithms. Frontiers Media S.A. 2021-10-29 /pmc/articles/PMC8585774/ /pubmed/34776967 http://dx.doi.org/10.3389/fphar.2021.749786 Text en Copyright © 2021 Steiner, Giles, Patterson, Feng, El Rouby, Claudio, Marcatto, Tavares, Galvez, Calderon-Ospina, Sun, Hutz, Scott, Cavallari, Fonseca-Mendoza, Duconge, Botton, Santos and Karnes. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Pharmacology
Steiner, Heidi E.
Giles, Jason B.
Patterson, Hayley Knight
Feng, Jianglin
El Rouby, Nihal
Claudio, Karla
Marcatto, Leiliane Rodrigues
Tavares, Leticia Camargo
Galvez, Jubby Marcela
Calderon-Ospina, Carlos-Alberto
Sun, Xiaoxiao
Hutz, Mara H.
Scott, Stuart A.
Cavallari, Larisa H.
Fonseca-Mendoza, Dora Janeth
Duconge, Jorge
Botton, Mariana Rodrigues
Santos, Paulo Caleb Junior Lima
Karnes, Jason H.
Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans
title Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans
title_full Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans
title_fullStr Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans
title_full_unstemmed Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans
title_short Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans
title_sort machine learning for prediction of stable warfarin dose in us latinos and latin americans
topic Pharmacology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585774/
https://www.ncbi.nlm.nih.gov/pubmed/34776967
http://dx.doi.org/10.3389/fphar.2021.749786
work_keys_str_mv AT steinerheidie machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT gilesjasonb machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT pattersonhayleyknight machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT fengjianglin machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT elroubynihal machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT claudiokarla machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT marcattoleilianerodrigues machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT tavaresleticiacamargo machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT galvezjubbymarcela machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT calderonospinacarlosalberto machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT sunxiaoxiao machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT hutzmarah machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT scottstuarta machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT cavallarilarisah machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT fonsecamendozadorajaneth machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT ducongejorge machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT bottonmarianarodrigues machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT santospaulocalebjuniorlima machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans
AT karnesjasonh machinelearningforpredictionofstablewarfarindoseinuslatinosandlatinamericans