Cargando…
PET/CT background noise and its effect on speech recognition
Positron emission tomography (PET) has been successfully used to investigate central nervous processes, including the central auditory pathway. Unlike early water-cooled PET-scanners, novel PET/CT scanners employ air cooling and include a CT system, both of which result in higher background noise le...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585948/ https://www.ncbi.nlm.nih.gov/pubmed/34764407 http://dx.doi.org/10.1038/s41598-021-01686-5 |
Sumario: | Positron emission tomography (PET) has been successfully used to investigate central nervous processes, including the central auditory pathway. Unlike early water-cooled PET-scanners, novel PET/CT scanners employ air cooling and include a CT system, both of which result in higher background noise levels. In the present study, we describe the background noise generated by two state-of-the-art air-cooled PET/CT scanners. We measured speech recognition in background noise: recorded PET noise and a speech-shaped noise applied in clinical routine to subjects with normal hearing. Background noise produced by air-cooled PET/CT is considerable: 75.1 dB SPL (64.5 dB(A)) for the Philips Gemini TF64 and 76.9 dB SPL (68.4 dB(A)) for the Philips Vereos PET/CT (Philips Healthcare, The Netherlands). Subjects with normal hearing exhibited better speech recognition in recorded PET background noise compared with clinically applied speech-shaped noise. Speech recognition in both background noises correlated significantly. Background noise generated by PET/CT scanners should be considered when PET is used for the investigation of the central auditory pathway. Speech in PET noise is better than in speech-shaped noise because of the minor masking effect of the background noise of the PET/CT. |
---|