Cargando…
PSCNN: PatchShuffle Convolutional Neural Network for COVID-19 Explainable Diagnosis
Objective: COVID-19 is a sort of infectious disease caused by a new strain of coronavirus. This study aims to develop a more accurate COVID-19 diagnosis system. Methods: First, the n-conv module (nCM) is introduced. Then we built a 12-layer convolutional neural network (12l-CNN) as the backbone netw...
Autores principales: | Wang, Shui-Hua, Zhu, Ziquan, Zhang, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585997/ https://www.ncbi.nlm.nih.gov/pubmed/34778194 http://dx.doi.org/10.3389/fpubh.2021.768278 |
Ejemplares similares
-
PSSPNN: PatchShuffle Stochastic Pooling Neural Network for an Explainable Diagnosis of COVID-19 with Multiple-Way Data Augmentation
por: Wang, Shui-Hua, et al.
Publicado: (2021) -
Retracted: PSSPNN: PatchShuffle Stochastic Pooling Neural Network for an Explainable Diagnosis of COVID-19 with Multiple-Way Data Augmentation
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
A Survey of Convolutional Neural Network in Breast Cancer
por: Zhu, Ziquan, et al.
Publicado: (2023) -
Diagnosis of Patellofemoral Pain Syndrome Based on a Multi-Input Convolutional Neural Network With Data Augmentation
por: Shi, Wuxiang, et al.
Publicado: (2021) -
WACPN: A Neural Network for Pneumonia Diagnosis
por: Wang, Shui-Hua, et al.
Publicado: (2023)