Cargando…
A multimode metamaterial for a compact and robust dualband wireless power transfer system
To release more flexibility for users to charge their portable devices, researchers have increasingly developed compact wireless power transfer (WPT) systems in recent years. Also, a dual-band WPT system is proposed to transfer power and signal simultaneously, enriching the system’s functionality. M...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586012/ https://www.ncbi.nlm.nih.gov/pubmed/34764393 http://dx.doi.org/10.1038/s41598-021-01677-6 |
Sumario: | To release more flexibility for users to charge their portable devices, researchers have increasingly developed compact wireless power transfer (WPT) systems in recent years. Also, a dual-band WPT system is proposed to transfer power and signal simultaneously, enriching the system’s functionality. Moreover, a stacked metasurface has recently been proposed for a single band near-field WPT system. In this study, a novel multimode self-resonance-enhanced wideband metasurface is proposed for a robust dual-band WPT system, which significantly improves the performance of both bands. The size of the transmitter (Tx) and the receiver (Rx) are both 15 mm × 15 mm only. The proposed metasurface can improve efficiency from 0.04 up to 39% in the best case. The measured figure of merit (FoM) is 2.09 at 390 MHz and 2.16 at 770 MHz, respectively, in the balanced mode. Especially, the FoM can reach up to 4.34 in the lower mode. Compared to the previous state-of-the-art for similar applications, the WPT performance has significantly been improved. |
---|