Cargando…
Towards inferring nanopore sequencing ionic currents from nucleotide chemical structures
The characteristic ionic currents of nucleotide kmers are commonly used in analyzing nanopore sequencing readouts. We present a graph convolutional network-based deep learning framework for predicting kmer characteristic ionic currents from corresponding chemical structures. We show such a framework...
Autores principales: | Ding, Hongxu, Anastopoulos, Ioannis, Bailey, Andrew D., Stuart, Joshua, Paten, Benedict |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586022/ https://www.ncbi.nlm.nih.gov/pubmed/34764310 http://dx.doi.org/10.1038/s41467-021-26929-x |
Ejemplares similares
-
VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
por: Seninge, Lucas, et al.
Publicado: (2021) -
The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community
por: Jain, Miten, et al.
Publicado: (2016) -
Erratum to: The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community
por: Jain, Miten, et al.
Publicado: (2016) -
Concerted modification of nucleotides at functional centers of the ribosome revealed by single-molecule RNA modification profiling
por: Bailey, Andrew D, et al.
Publicado: (2022) -
Improved data analysis for the MinION nanopore sequencer
por: Jain, Miten, et al.
Publicado: (2015)