Cargando…
Application of Extreme Learning Machine in the Survival Analysis of Chronic Heart Failure Patients With High Percentage of Censored Survival Time
Objective: To explore the application of the Cox model based on extreme learning machine in the survival analysis of patients with chronic heart failure. Methods: The medical records of 5,279 inpatients diagnosed with chronic heart failure in two grade 3 and first-class hospitals in Taiyuan from 201...
Autores principales: | Yang, Hong, Tian, Jing, Meng, Bingxia, Wang, Ke, Zheng, Chu, Liu, Yanling, Yan, Jingjing, Han, Qinghua, Zhang, Yanbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586069/ https://www.ncbi.nlm.nih.gov/pubmed/34778396 http://dx.doi.org/10.3389/fcvm.2021.726516 |
Ejemplares similares
-
Disproportionate Mitral Regurgitation Determines Survival in Acute Heart Failure
por: Berrill, Max, et al.
Publicado: (2021) -
Low extracellular vesicle concentrations predict survival in patients with heart failure
por: Schöler, David, et al.
Publicado: (2023) -
Benefits of Interventional Telemonitoring on Survival and Unplanned Hospitalization in Patients With Chronic Heart Failure
por: Galinier, Michel, et al.
Publicado: (2022) -
Improvement of a prediction model for heart failure survival through explainable artificial intelligence
por: Moreno-Sánchez, Pedro A.
Publicado: (2023) -
Social and therapeutic decline earlier than physical and psychological domains after discharge in heart failure patients: A patient-reported outcome measurements of latent transition analysis
por: Yang, Hong, et al.
Publicado: (2022)