Cargando…

Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets

Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality pred...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Ci, Zhang, Xiang, Veri, Amanda O., Iyer, Kali R., Lash, Emma, Xue, Alice, Yan, Huijuan, Revie, Nicole M., Wong, Cassandra, Lin, Zhen-Yuan, Polvi, Elizabeth J., Liston, Sean D., VanderSluis, Benjamin, Hou, Jing, Yashiroda, Yoko, Gingras, Anne-Claude, Boone, Charles, O’Meara, Teresa R., O’Meara, Matthew J., Noble, Suzanne, Robbins, Nicole, Myers, Chad L., Cowen, Leah E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586148/
https://www.ncbi.nlm.nih.gov/pubmed/34764269
http://dx.doi.org/10.1038/s41467-021-26850-3
_version_ 1784597832286601216
author Fu, Ci
Zhang, Xiang
Veri, Amanda O.
Iyer, Kali R.
Lash, Emma
Xue, Alice
Yan, Huijuan
Revie, Nicole M.
Wong, Cassandra
Lin, Zhen-Yuan
Polvi, Elizabeth J.
Liston, Sean D.
VanderSluis, Benjamin
Hou, Jing
Yashiroda, Yoko
Gingras, Anne-Claude
Boone, Charles
O’Meara, Teresa R.
O’Meara, Matthew J.
Noble, Suzanne
Robbins, Nicole
Myers, Chad L.
Cowen, Leah E.
author_facet Fu, Ci
Zhang, Xiang
Veri, Amanda O.
Iyer, Kali R.
Lash, Emma
Xue, Alice
Yan, Huijuan
Revie, Nicole M.
Wong, Cassandra
Lin, Zhen-Yuan
Polvi, Elizabeth J.
Liston, Sean D.
VanderSluis, Benjamin
Hou, Jing
Yashiroda, Yoko
Gingras, Anne-Claude
Boone, Charles
O’Meara, Teresa R.
O’Meara, Matthew J.
Noble, Suzanne
Robbins, Nicole
Myers, Chad L.
Cowen, Leah E.
author_sort Fu, Ci
collection PubMed
description Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), an antifungal compound.
format Online
Article
Text
id pubmed-8586148
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-85861482021-11-15 Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets Fu, Ci Zhang, Xiang Veri, Amanda O. Iyer, Kali R. Lash, Emma Xue, Alice Yan, Huijuan Revie, Nicole M. Wong, Cassandra Lin, Zhen-Yuan Polvi, Elizabeth J. Liston, Sean D. VanderSluis, Benjamin Hou, Jing Yashiroda, Yoko Gingras, Anne-Claude Boone, Charles O’Meara, Teresa R. O’Meara, Matthew J. Noble, Suzanne Robbins, Nicole Myers, Chad L. Cowen, Leah E. Nat Commun Article Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), an antifungal compound. Nature Publishing Group UK 2021-11-11 /pmc/articles/PMC8586148/ /pubmed/34764269 http://dx.doi.org/10.1038/s41467-021-26850-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Fu, Ci
Zhang, Xiang
Veri, Amanda O.
Iyer, Kali R.
Lash, Emma
Xue, Alice
Yan, Huijuan
Revie, Nicole M.
Wong, Cassandra
Lin, Zhen-Yuan
Polvi, Elizabeth J.
Liston, Sean D.
VanderSluis, Benjamin
Hou, Jing
Yashiroda, Yoko
Gingras, Anne-Claude
Boone, Charles
O’Meara, Teresa R.
O’Meara, Matthew J.
Noble, Suzanne
Robbins, Nicole
Myers, Chad L.
Cowen, Leah E.
Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
title Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
title_full Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
title_fullStr Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
title_full_unstemmed Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
title_short Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
title_sort leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586148/
https://www.ncbi.nlm.nih.gov/pubmed/34764269
http://dx.doi.org/10.1038/s41467-021-26850-3
work_keys_str_mv AT fuci leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT zhangxiang leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT veriamandao leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT iyerkalir leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT lashemma leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT xuealice leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT yanhuijuan leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT revienicolem leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT wongcassandra leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT linzhenyuan leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT polvielizabethj leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT listonseand leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT vandersluisbenjamin leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT houjing leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT yashirodayoko leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT gingrasanneclaude leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT boonecharles leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT omearateresar leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT omearamatthewj leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT noblesuzanne leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT robbinsnicole leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT myerschadl leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets
AT cowenleahe leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets