Cargando…
Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets
Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality pred...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586148/ https://www.ncbi.nlm.nih.gov/pubmed/34764269 http://dx.doi.org/10.1038/s41467-021-26850-3 |
_version_ | 1784597832286601216 |
---|---|
author | Fu, Ci Zhang, Xiang Veri, Amanda O. Iyer, Kali R. Lash, Emma Xue, Alice Yan, Huijuan Revie, Nicole M. Wong, Cassandra Lin, Zhen-Yuan Polvi, Elizabeth J. Liston, Sean D. VanderSluis, Benjamin Hou, Jing Yashiroda, Yoko Gingras, Anne-Claude Boone, Charles O’Meara, Teresa R. O’Meara, Matthew J. Noble, Suzanne Robbins, Nicole Myers, Chad L. Cowen, Leah E. |
author_facet | Fu, Ci Zhang, Xiang Veri, Amanda O. Iyer, Kali R. Lash, Emma Xue, Alice Yan, Huijuan Revie, Nicole M. Wong, Cassandra Lin, Zhen-Yuan Polvi, Elizabeth J. Liston, Sean D. VanderSluis, Benjamin Hou, Jing Yashiroda, Yoko Gingras, Anne-Claude Boone, Charles O’Meara, Teresa R. O’Meara, Matthew J. Noble, Suzanne Robbins, Nicole Myers, Chad L. Cowen, Leah E. |
author_sort | Fu, Ci |
collection | PubMed |
description | Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), an antifungal compound. |
format | Online Article Text |
id | pubmed-8586148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-85861482021-11-15 Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets Fu, Ci Zhang, Xiang Veri, Amanda O. Iyer, Kali R. Lash, Emma Xue, Alice Yan, Huijuan Revie, Nicole M. Wong, Cassandra Lin, Zhen-Yuan Polvi, Elizabeth J. Liston, Sean D. VanderSluis, Benjamin Hou, Jing Yashiroda, Yoko Gingras, Anne-Claude Boone, Charles O’Meara, Teresa R. O’Meara, Matthew J. Noble, Suzanne Robbins, Nicole Myers, Chad L. Cowen, Leah E. Nat Commun Article Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), an antifungal compound. Nature Publishing Group UK 2021-11-11 /pmc/articles/PMC8586148/ /pubmed/34764269 http://dx.doi.org/10.1038/s41467-021-26850-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Fu, Ci Zhang, Xiang Veri, Amanda O. Iyer, Kali R. Lash, Emma Xue, Alice Yan, Huijuan Revie, Nicole M. Wong, Cassandra Lin, Zhen-Yuan Polvi, Elizabeth J. Liston, Sean D. VanderSluis, Benjamin Hou, Jing Yashiroda, Yoko Gingras, Anne-Claude Boone, Charles O’Meara, Teresa R. O’Meara, Matthew J. Noble, Suzanne Robbins, Nicole Myers, Chad L. Cowen, Leah E. Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets |
title | Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets |
title_full | Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets |
title_fullStr | Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets |
title_full_unstemmed | Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets |
title_short | Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets |
title_sort | leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586148/ https://www.ncbi.nlm.nih.gov/pubmed/34764269 http://dx.doi.org/10.1038/s41467-021-26850-3 |
work_keys_str_mv | AT fuci leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT zhangxiang leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT veriamandao leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT iyerkalir leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT lashemma leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT xuealice leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT yanhuijuan leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT revienicolem leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT wongcassandra leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT linzhenyuan leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT polvielizabethj leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT listonseand leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT vandersluisbenjamin leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT houjing leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT yashirodayoko leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT gingrasanneclaude leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT boonecharles leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT omearateresar leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT omearamatthewj leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT noblesuzanne leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT robbinsnicole leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT myerschadl leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets AT cowenleahe leveragingmachinelearningessentialitypredictionsandchemogenomicinteractionstoidentifyantifungaltargets |