Cargando…

Dihydroartemisinin inhibits IL-6-induced epithelial–mesenchymal transition in laryngeal squamous cell carcinoma via the miR-130b-3p/STAT3/β-catenin signaling pathway

OBJECTIVE: To explore whether dihydroartemisinin (DHA) can block interleukin (IL)-6-induced epithelial–mesenchymal transition (EMT) in laryngeal squamous cell carcinoma (LSCC). METHODS: The expression of SLUG, signal transducer and activator of transcription 3 (STAT3), and microRNA (miR)-130b-3p was...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yajing, Lu, Xiuying, Li, Hui, Li, Xiaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586195/
https://www.ncbi.nlm.nih.gov/pubmed/34755560
http://dx.doi.org/10.1177/03000605211009494
Descripción
Sumario:OBJECTIVE: To explore whether dihydroartemisinin (DHA) can block interleukin (IL)-6-induced epithelial–mesenchymal transition (EMT) in laryngeal squamous cell carcinoma (LSCC). METHODS: The expression of SLUG, signal transducer and activator of transcription 3 (STAT3), and microRNA (miR)-130b-3p was measured. In addition, a dual-luciferase reporter assay was performed to examine the interaction of miR-130b-3p with STAT3. RESULTS: We found that IL-6 can promote EMT and invasion in LSCC cells, whereas DHA can inhibit these two processes. However, DHA alone does not influence EMT and cancer invasion. Furthermore, DHA upregulated miR-130b-3p, which can downregulate STAT3 and β-catenin protein expression and decrease the activity of the IL-6/STAT3 signaling pathway. Moreover, we found that miR-130b-3p can target STAT3 directly. CONCLUSIONS: DHA can block IL-6-triggered EMT and invasion in LSCC, and during these processes, DHA increases miR-130b-3p expression to decrease the activation of the IL-6/STAT3 and β-catenin signaling pathways. These findings may provide new insights into strategies for suppressing and even preventing LSCC metastasis.