Cargando…
QF-TraderNet: Intraday Trading via Deep Reinforcement With Quantum Price Levels Based Profit-And-Loss Control
Reinforcement Learning (RL) based machine trading attracts a rich profusion of interest. However, in the existing research, RL in the day-trade task suffers from the noisy financial movement in the short time scale, difficulty in order settlement, and expensive action search in a continuous-value sp...
Autores principales: | Qiu, Yifu, Qiu, Yitao, Yuan, Yicong, Chen, Zheng, Lee, Raymond |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586520/ https://www.ncbi.nlm.nih.gov/pubmed/34778753 http://dx.doi.org/10.3389/frai.2021.749878 |
Ejemplares similares
-
Quantum Prisoner’s Dilemma and High Frequency Trading on the Quantum Cloud
por: Khan, Faisal Shah, et al.
Publicado: (2021) -
Mastering the trade: proven techniques for profiting from intraday and swing trading setups
por: Carter, John F, et al.
Publicado: (2012) -
Neural Network Models for Bitcoin Option Pricing
por: Pagnottoni, Paolo
Publicado: (2019) -
LSTM-based sentiment analysis for stock price forecast
por: Ko, Ching-Ru, et al.
Publicado: (2021) -
Predictions of bitcoin prices through machine learning based frameworks
por: Cocco, Luisanna, et al.
Publicado: (2021)