Cargando…

Inhibition of acid ceramidase elicits mitochondrial dysfunction and oxidative stress in pancreatic cancer cells

Although the inhibition of acid ceramidase (AC) is known to induce antitumor effects in various cancers, there are few reports in pancreatic cancer, and the underlying mechanisms remain unclear. Moreover, there is currently no safe administration method of AC inhibitor. Here the effects of gene ther...

Descripción completa

Detalles Bibliográficos
Autores principales: Taniai, Tomohiko, Shirai, Yoshihiro, Shimada, Yohta, Hamura, Ryoga, Yanagaki, Mitsuru, Takada, Naoki, Horiuchi, Takashi, Haruki, Koichiro, Furukawa, Kenei, Uwagawa, Tadashi, Tsuboi, Kazuhito, Okamoto, Yasuo, Shimada, Shu, Tanaka, Shinji, Ohashi, Toya, Ikegami, Toru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586682/
https://www.ncbi.nlm.nih.gov/pubmed/34459070
http://dx.doi.org/10.1111/cas.15123
Descripción
Sumario:Although the inhibition of acid ceramidase (AC) is known to induce antitumor effects in various cancers, there are few reports in pancreatic cancer, and the underlying mechanisms remain unclear. Moreover, there is currently no safe administration method of AC inhibitor. Here the effects of gene therapy using siRNA and shRNA for AC inhibition with its mechanisms for pancreatic cancer were investigated. The inhibition of AC by siRNA and shRNA using an adeno‐associated virus 8 (AAV8) vector had antiproliferative effects by inducing apoptosis in pancreatic cancer cells and xenograft mouse model. Acid ceramidase inhibition elicits mitochondrial dysfunction, reactive oxygen species accumulation, and manganese superoxide dismutase suppression, resulting in apoptosis of pancreatic cancer cells accompanied by ceramide accumulation. These results elucidated the mechanisms underlying the antitumor effect of AC inhibition in pancreatic cancer cells and suggest the potential of the AAV8 vector to inhibit AC as a therapeutic strategy.