Cargando…

Gut‐liver axis‐mediated mechanism of liver cancer: A special focus on the role of gut microbiota

Gut microbiota and the mammalian host share a symbiotic relationship, in which the host provides a suitable ecosystem for the gut bacteria to digest indigestible nutrients and produce useful metabolites. Although gut microbiota primarily reside in and influence the intestine, they also regulate live...

Descripción completa

Detalles Bibliográficos
Autores principales: Ohtani, Naoko, Hara, Eiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586687/
https://www.ncbi.nlm.nih.gov/pubmed/34533882
http://dx.doi.org/10.1111/cas.15142
_version_ 1784597943220699136
author Ohtani, Naoko
Hara, Eiji
author_facet Ohtani, Naoko
Hara, Eiji
author_sort Ohtani, Naoko
collection PubMed
description Gut microbiota and the mammalian host share a symbiotic relationship, in which the host provides a suitable ecosystem for the gut bacteria to digest indigestible nutrients and produce useful metabolites. Although gut microbiota primarily reside in and influence the intestine, they also regulate liver function via absorption and subsequent transfer of microbial components and metabolites through the portal vein to the liver. Due to this transfer, the liver may be continuously exposed to gut‐derived metabolites and components. For example, short‐chain fatty acids (SCFA) produced by gut microbiota, through the fermentation of dietary fiber, can suppress inflammation via regulatory T cell induction through SCFA‐induced epigenetic mechanisms. Additionally, secondary bile acids (BA), such as deoxycholic acid, produced by gut bacteria through the 7α‐dehydroxylation of primary BAs, are thought to induce DNA damage and contribute to the remodeling of tumor microenvironments. Other substances that are also thought to influence liver function include lipopolysaccharides (components of the outer membrane of gram‐negative bacteria) and lipoteichoic acid (cell wall component of Gram‐positive bacteria), which are ligands of innate immune receptors, Toll‐like receptor‐4, and Toll‐like receptor‐2, respectively, through which inflammatory signaling is elicited. In this review, we focus on the role of gut microbiota in the liver microenvironment, describing the anatomy of the gut‐liver axis, the role of gut microbial metabolites, and the relationships that exist between gut microbiota and liver diseases, including liver cancer.
format Online
Article
Text
id pubmed-8586687
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-85866872021-11-18 Gut‐liver axis‐mediated mechanism of liver cancer: A special focus on the role of gut microbiota Ohtani, Naoko Hara, Eiji Cancer Sci Review Articles Gut microbiota and the mammalian host share a symbiotic relationship, in which the host provides a suitable ecosystem for the gut bacteria to digest indigestible nutrients and produce useful metabolites. Although gut microbiota primarily reside in and influence the intestine, they also regulate liver function via absorption and subsequent transfer of microbial components and metabolites through the portal vein to the liver. Due to this transfer, the liver may be continuously exposed to gut‐derived metabolites and components. For example, short‐chain fatty acids (SCFA) produced by gut microbiota, through the fermentation of dietary fiber, can suppress inflammation via regulatory T cell induction through SCFA‐induced epigenetic mechanisms. Additionally, secondary bile acids (BA), such as deoxycholic acid, produced by gut bacteria through the 7α‐dehydroxylation of primary BAs, are thought to induce DNA damage and contribute to the remodeling of tumor microenvironments. Other substances that are also thought to influence liver function include lipopolysaccharides (components of the outer membrane of gram‐negative bacteria) and lipoteichoic acid (cell wall component of Gram‐positive bacteria), which are ligands of innate immune receptors, Toll‐like receptor‐4, and Toll‐like receptor‐2, respectively, through which inflammatory signaling is elicited. In this review, we focus on the role of gut microbiota in the liver microenvironment, describing the anatomy of the gut‐liver axis, the role of gut microbial metabolites, and the relationships that exist between gut microbiota and liver diseases, including liver cancer. John Wiley and Sons Inc. 2021-09-27 2021-11 /pmc/articles/PMC8586687/ /pubmed/34533882 http://dx.doi.org/10.1111/cas.15142 Text en © 2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Review Articles
Ohtani, Naoko
Hara, Eiji
Gut‐liver axis‐mediated mechanism of liver cancer: A special focus on the role of gut microbiota
title Gut‐liver axis‐mediated mechanism of liver cancer: A special focus on the role of gut microbiota
title_full Gut‐liver axis‐mediated mechanism of liver cancer: A special focus on the role of gut microbiota
title_fullStr Gut‐liver axis‐mediated mechanism of liver cancer: A special focus on the role of gut microbiota
title_full_unstemmed Gut‐liver axis‐mediated mechanism of liver cancer: A special focus on the role of gut microbiota
title_short Gut‐liver axis‐mediated mechanism of liver cancer: A special focus on the role of gut microbiota
title_sort gut‐liver axis‐mediated mechanism of liver cancer: a special focus on the role of gut microbiota
topic Review Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586687/
https://www.ncbi.nlm.nih.gov/pubmed/34533882
http://dx.doi.org/10.1111/cas.15142
work_keys_str_mv AT ohtaninaoko gutliveraxismediatedmechanismoflivercanceraspecialfocusontheroleofgutmicrobiota
AT haraeiji gutliveraxismediatedmechanismoflivercanceraspecialfocusontheroleofgutmicrobiota