Cargando…
Fast and memory-efficient scRNA-seq k-means clustering with various distances
Single-cell RNA-sequencing (scRNA-seq) analyses typically begin by clustering a gene-by-cell expression matrix to empirically define groups of cells with similar expression profiles. We describe new methods and a new open source library, minicore, for efficient k-means++ center finding and k-means c...
Autores principales: | Baker, Daniel N., Dyjack, Nathan, Braverman, Vladimir, Hicks, Stephanie C., Langmead, Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586878/ https://www.ncbi.nlm.nih.gov/pubmed/34778889 http://dx.doi.org/10.1145/3459930.3469523 |
Ejemplares similares
-
A clustering method for small scRNA-seq data based on subspace and weighted distance
por: Ning, Zilan, et al.
Publicado: (2023) -
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
por: Wang, HaiYun, et al.
Publicado: (2022) -
Contrastive self-supervised clustering of scRNA-seq data
por: Ciortan, Madalina, et al.
Publicado: (2021) -
Effect of distance measures on confidences of t-SNE embeddings and its implications on clustering for scRNA-seq data
por: Ozgode Yigin, Busra, et al.
Publicado: (2023) -
Boosting scRNA-seq data clustering by cluster-aware feature weighting
por: Li, Rui-Yi, et al.
Publicado: (2021)