Cargando…
YOT-Net: YOLOv3 Combined Triplet Loss Network for Copper Elbow Surface Defect Detection
Copper elbows are an important product in industry. They are used to connect pipes for transferring gas, oil, and liquids. Defective copper elbows can lead to serious industrial accidents. In this paper, a novel model named YOT-Net (YOLOv3 combined triplet loss network) is proposed to automatically...
Autores principales: | Xian, Yuanqing, Liu, Guangjun, Fan, Jinfu, Yu, Yang, Wang, Zhongjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586934/ https://www.ncbi.nlm.nih.gov/pubmed/34770569 http://dx.doi.org/10.3390/s21217260 |
Ejemplares similares
-
Online Detection of Surface Defects Based on Improved YOLOV3
por: Chen, Xuechun, et al.
Publicado: (2022) -
Strip Surface Defect Detection Algorithm Based on YOLOv5
por: Wang, Han, et al.
Publicado: (2023) -
Metal surface defect detection based on improved YOLOv5
por: Zhou, Chuande, et al.
Publicado: (2023) -
Cost-Sensitive YOLOv5 for Detecting Surface Defects of Industrial Products
por: Liu, Ben, et al.
Publicado: (2023) -
Strip steel surface defect detection based on lightweight YOLOv5
por: Zhang, Yongping, et al.
Publicado: (2023)