Cargando…

Weather Sensing in an Urban Environment with the Use of a UAV and WebRTC-Based Platform: A Pilot Study

Thanks to IoT, Internet access, and low-cost sensors, it has become possible to increase the number of weather measuring points; hence, the density of the deployment of sources that provide weather data for the needs of large recipients, for example, weather web services or smart city management sys...

Descripción completa

Detalles Bibliográficos
Autores principales: Chodorek, Agnieszka, Chodorek, Robert Ryszard, Yastrebov, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586944/
https://www.ncbi.nlm.nih.gov/pubmed/34770420
http://dx.doi.org/10.3390/s21217113
Descripción
Sumario:Thanks to IoT, Internet access, and low-cost sensors, it has become possible to increase the number of weather measuring points; hence, the density of the deployment of sources that provide weather data for the needs of large recipients, for example, weather web services or smart city management systems, has also increased. This paper presents a flying weather station that carries out measurements of two weather factors that are typically included in weather stations (ambient temperature and relative humidity), an often included weather factor (atmospheric pressure), and a rarely included one (ultraviolet index). In our solution, the measurements are supplemented with a visual observation of present weather phenomena. The flying weather station is built on a UAV and WebRTC-based universal platform proposed in our previous paper. The complete, fully operational flying weather station was evaluated in field studies. Experiments were conducted during a 6-month period on days having noticeably different weather conditions. Results show that weather data coming from the flying weather station were equal (with a good approximation) to weather data obtained from the reference weather station. When compared to the weather stations described in the literature (both stationary weather stations and mobile ones), the proposed solution achieved better accuracy than the other weather stations based on low-cost sensors.