Cargando…
Functionalization of Graphene Oxide with Polysilicone: Synthesis, Characterization, and Its Flame Retardancy in Epoxy Resin
A novel polysilicone flame retardant (PMDA) has been synthesized and covalently grafted onto the surfaces of graphene oxide (GO) to obtain GO-PMDA. The chemical structure and morphology of GO-PMDA was characterized and confirmed by the Fourier transform infrared (FTIR) spectroscopy, X-ray photoelect...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586985/ https://www.ncbi.nlm.nih.gov/pubmed/34771413 http://dx.doi.org/10.3390/polym13213857 |
_version_ | 1784597995968266240 |
---|---|
author | Wang, Jiangbo |
author_facet | Wang, Jiangbo |
author_sort | Wang, Jiangbo |
collection | PubMed |
description | A novel polysilicone flame retardant (PMDA) has been synthesized and covalently grafted onto the surfaces of graphene oxide (GO) to obtain GO-PMDA. The chemical structure and morphology of GO-PMDA was characterized and confirmed by the Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectrometer (XPS), atomic force microscope (AFM), and thermogravimetric analysis (TGA). The results of dynamic mechanical analysis (DMA) indicated that the grafting of PMDA improved the dispersion and solubility of GO sheets in the epoxy resin (EP) matrix. The TGA and cone calorimeter measurements showed that compared with the GO, GO-PMDA could significantly improve the thermal stability and flame retardancy of EP. In comparison to pure EP, the peak heat release rate (pHRR) and total heat release (THR) of EP/GO-PMDA were reduced by 30.5% and 10.0% respectively. This greatly enhanced the flame retardancy of EP which was mainly attributed to the synergistic effect of GO-PMDA. Polysilicone can create a stable silica layer on the char surface of EP, which reinforces the barrier effect of graphene. |
format | Online Article Text |
id | pubmed-8586985 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85869852021-11-13 Functionalization of Graphene Oxide with Polysilicone: Synthesis, Characterization, and Its Flame Retardancy in Epoxy Resin Wang, Jiangbo Polymers (Basel) Article A novel polysilicone flame retardant (PMDA) has been synthesized and covalently grafted onto the surfaces of graphene oxide (GO) to obtain GO-PMDA. The chemical structure and morphology of GO-PMDA was characterized and confirmed by the Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectrometer (XPS), atomic force microscope (AFM), and thermogravimetric analysis (TGA). The results of dynamic mechanical analysis (DMA) indicated that the grafting of PMDA improved the dispersion and solubility of GO sheets in the epoxy resin (EP) matrix. The TGA and cone calorimeter measurements showed that compared with the GO, GO-PMDA could significantly improve the thermal stability and flame retardancy of EP. In comparison to pure EP, the peak heat release rate (pHRR) and total heat release (THR) of EP/GO-PMDA were reduced by 30.5% and 10.0% respectively. This greatly enhanced the flame retardancy of EP which was mainly attributed to the synergistic effect of GO-PMDA. Polysilicone can create a stable silica layer on the char surface of EP, which reinforces the barrier effect of graphene. MDPI 2021-11-08 /pmc/articles/PMC8586985/ /pubmed/34771413 http://dx.doi.org/10.3390/polym13213857 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Jiangbo Functionalization of Graphene Oxide with Polysilicone: Synthesis, Characterization, and Its Flame Retardancy in Epoxy Resin |
title | Functionalization of Graphene Oxide with Polysilicone: Synthesis, Characterization, and Its Flame Retardancy in Epoxy Resin |
title_full | Functionalization of Graphene Oxide with Polysilicone: Synthesis, Characterization, and Its Flame Retardancy in Epoxy Resin |
title_fullStr | Functionalization of Graphene Oxide with Polysilicone: Synthesis, Characterization, and Its Flame Retardancy in Epoxy Resin |
title_full_unstemmed | Functionalization of Graphene Oxide with Polysilicone: Synthesis, Characterization, and Its Flame Retardancy in Epoxy Resin |
title_short | Functionalization of Graphene Oxide with Polysilicone: Synthesis, Characterization, and Its Flame Retardancy in Epoxy Resin |
title_sort | functionalization of graphene oxide with polysilicone: synthesis, characterization, and its flame retardancy in epoxy resin |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586985/ https://www.ncbi.nlm.nih.gov/pubmed/34771413 http://dx.doi.org/10.3390/polym13213857 |
work_keys_str_mv | AT wangjiangbo functionalizationofgrapheneoxidewithpolysiliconesynthesischaracterizationanditsflameretardancyinepoxyresin |