Cargando…
Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks
Deep learning (DL) algorithms have become an increasingly popular choice for image classification and segmentation tasks; however, their range of applications can be limited. Their limitation stems from them requiring ample data to achieve high performance and adequate generalizability. In the case...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587013/ https://www.ncbi.nlm.nih.gov/pubmed/34770324 http://dx.doi.org/10.3390/s21217018 |
_version_ | 1784598005680177152 |
---|---|
author | Lo, Justin Cardinell, Jillian Costanzo, Alejo Sussman, Dafna |
author_facet | Lo, Justin Cardinell, Jillian Costanzo, Alejo Sussman, Dafna |
author_sort | Lo, Justin |
collection | PubMed |
description | Deep learning (DL) algorithms have become an increasingly popular choice for image classification and segmentation tasks; however, their range of applications can be limited. Their limitation stems from them requiring ample data to achieve high performance and adequate generalizability. In the case of clinical imaging data, images are not always available in large quantities. This issue can be alleviated by using data augmentation (DA) techniques. The choice of DA is important because poor selection can possibly hinder the performance of a DL algorithm. We propose a DA policy search algorithm that offers an extended set of transformations that accommodate the variations in biomedical imaging datasets. The algorithm makes use of the efficient and high-dimensional optimizer Bi-Population Covariance Matrix Adaptation Evolution Strategy (BIPOP-CMA-ES) and returns an optimal DA policy based on any input imaging dataset and a DL algorithm. Our proposed algorithm, Medical Augmentation (Med-Aug), can be implemented by other researchers in related medical DL applications to improve their model’s performance. Furthermore, we present our found optimal DA policies for a variety of medical datasets and popular segmentation networks for other researchers to use in related tasks. |
format | Online Article Text |
id | pubmed-8587013 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85870132021-11-13 Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks Lo, Justin Cardinell, Jillian Costanzo, Alejo Sussman, Dafna Sensors (Basel) Article Deep learning (DL) algorithms have become an increasingly popular choice for image classification and segmentation tasks; however, their range of applications can be limited. Their limitation stems from them requiring ample data to achieve high performance and adequate generalizability. In the case of clinical imaging data, images are not always available in large quantities. This issue can be alleviated by using data augmentation (DA) techniques. The choice of DA is important because poor selection can possibly hinder the performance of a DL algorithm. We propose a DA policy search algorithm that offers an extended set of transformations that accommodate the variations in biomedical imaging datasets. The algorithm makes use of the efficient and high-dimensional optimizer Bi-Population Covariance Matrix Adaptation Evolution Strategy (BIPOP-CMA-ES) and returns an optimal DA policy based on any input imaging dataset and a DL algorithm. Our proposed algorithm, Medical Augmentation (Med-Aug), can be implemented by other researchers in related medical DL applications to improve their model’s performance. Furthermore, we present our found optimal DA policies for a variety of medical datasets and popular segmentation networks for other researchers to use in related tasks. MDPI 2021-10-22 /pmc/articles/PMC8587013/ /pubmed/34770324 http://dx.doi.org/10.3390/s21217018 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lo, Justin Cardinell, Jillian Costanzo, Alejo Sussman, Dafna Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks |
title | Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks |
title_full | Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks |
title_fullStr | Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks |
title_full_unstemmed | Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks |
title_short | Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks |
title_sort | medical augmentation (med-aug) for optimal data augmentation in medical deep learning networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587013/ https://www.ncbi.nlm.nih.gov/pubmed/34770324 http://dx.doi.org/10.3390/s21217018 |
work_keys_str_mv | AT lojustin medicalaugmentationmedaugforoptimaldataaugmentationinmedicaldeeplearningnetworks AT cardinelljillian medicalaugmentationmedaugforoptimaldataaugmentationinmedicaldeeplearningnetworks AT costanzoalejo medicalaugmentationmedaugforoptimaldataaugmentationinmedicaldeeplearningnetworks AT sussmandafna medicalaugmentationmedaugforoptimaldataaugmentationinmedicaldeeplearningnetworks |