Cargando…
Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks
Deep learning (DL) algorithms have become an increasingly popular choice for image classification and segmentation tasks; however, their range of applications can be limited. Their limitation stems from them requiring ample data to achieve high performance and adequate generalizability. In the case...
Autores principales: | Lo, Justin, Cardinell, Jillian, Costanzo, Alejo, Sussman, Dafna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587013/ https://www.ncbi.nlm.nih.gov/pubmed/34770324 http://dx.doi.org/10.3390/s21217018 |
Ejemplares similares
-
EvoAug: improving generalization and interpretability of genomic deep neural networks with evolution-inspired data augmentations
por: Lee, Nicholas Keone, et al.
Publicado: (2023) -
Domain-guided data augmentation for deep learning on medical imaging
por: Athalye, Chinmayee, et al.
Publicado: (2023) -
Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review
por: Kebaili, Aghiles, et al.
Publicado: (2023) -
Text Data Augmentation for Deep Learning
por: Shorten, Connor, et al.
Publicado: (2021) -
Cross Attention Squeeze Excitation Network (CASE-Net) for Whole Body Fetal MRI Segmentation
por: Lo, Justin, et al.
Publicado: (2021)