Cargando…
Graph Theory on Brain Cortical Sources in Parkinson’s Disease: The Analysis of ‘Small World’ Organization from EEG
Parkinson’s disease (PD) is the second most common neurodegenerative disease in the elderly population. Similarly to other neurodegenerative diseases, the early diagnosis of PD is quite difficult. The current pilot study aimed to explore the differences in brain connectivity between PD and NOrmal eL...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587014/ https://www.ncbi.nlm.nih.gov/pubmed/34770573 http://dx.doi.org/10.3390/s21217266 |
_version_ | 1784598005905620992 |
---|---|
author | Vecchio, Fabrizio Pappalettera, Chiara Miraglia, Francesca Alù, Francesca Orticoni, Alessandro Judica, Elda Cotelli, Maria Pistoia, Francesca Rossini, Paolo Maria |
author_facet | Vecchio, Fabrizio Pappalettera, Chiara Miraglia, Francesca Alù, Francesca Orticoni, Alessandro Judica, Elda Cotelli, Maria Pistoia, Francesca Rossini, Paolo Maria |
author_sort | Vecchio, Fabrizio |
collection | PubMed |
description | Parkinson’s disease (PD) is the second most common neurodegenerative disease in the elderly population. Similarly to other neurodegenerative diseases, the early diagnosis of PD is quite difficult. The current pilot study aimed to explore the differences in brain connectivity between PD and NOrmal eLDerly (Nold) subjects to evaluate whether connectivity analysis may speed up and support early diagnosis. A total of 26 resting state EEGs were analyzed from 13 PD patients and 13 age-matched Nold subjects, applying to cortical reconstructions the graph theory analyses, a mathematical representation of brain architecture. Results showed that PD patients presented a more ordered structure at slow-frequency EEG rhythms (lower value of SW) than Nold subjects, particularly in the theta band, whereas in the high-frequency alpha, PD patients presented more random organization (higher SW) than Nold subjects. The current results suggest that PD could globally modulate the cortical connectivity of the brain, modifying the functional network organization and resulting in motor and non-motor signs. Future studies could validate whether such an approach, based on a low-cost and non-invasive technique, could be useful for early diagnosis, for the follow-up of PD progression, as well as for evaluating pharmacological and neurorehabilitation treatments. |
format | Online Article Text |
id | pubmed-8587014 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85870142021-11-13 Graph Theory on Brain Cortical Sources in Parkinson’s Disease: The Analysis of ‘Small World’ Organization from EEG Vecchio, Fabrizio Pappalettera, Chiara Miraglia, Francesca Alù, Francesca Orticoni, Alessandro Judica, Elda Cotelli, Maria Pistoia, Francesca Rossini, Paolo Maria Sensors (Basel) Article Parkinson’s disease (PD) is the second most common neurodegenerative disease in the elderly population. Similarly to other neurodegenerative diseases, the early diagnosis of PD is quite difficult. The current pilot study aimed to explore the differences in brain connectivity between PD and NOrmal eLDerly (Nold) subjects to evaluate whether connectivity analysis may speed up and support early diagnosis. A total of 26 resting state EEGs were analyzed from 13 PD patients and 13 age-matched Nold subjects, applying to cortical reconstructions the graph theory analyses, a mathematical representation of brain architecture. Results showed that PD patients presented a more ordered structure at slow-frequency EEG rhythms (lower value of SW) than Nold subjects, particularly in the theta band, whereas in the high-frequency alpha, PD patients presented more random organization (higher SW) than Nold subjects. The current results suggest that PD could globally modulate the cortical connectivity of the brain, modifying the functional network organization and resulting in motor and non-motor signs. Future studies could validate whether such an approach, based on a low-cost and non-invasive technique, could be useful for early diagnosis, for the follow-up of PD progression, as well as for evaluating pharmacological and neurorehabilitation treatments. MDPI 2021-10-31 /pmc/articles/PMC8587014/ /pubmed/34770573 http://dx.doi.org/10.3390/s21217266 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vecchio, Fabrizio Pappalettera, Chiara Miraglia, Francesca Alù, Francesca Orticoni, Alessandro Judica, Elda Cotelli, Maria Pistoia, Francesca Rossini, Paolo Maria Graph Theory on Brain Cortical Sources in Parkinson’s Disease: The Analysis of ‘Small World’ Organization from EEG |
title | Graph Theory on Brain Cortical Sources in Parkinson’s Disease: The Analysis of ‘Small World’ Organization from EEG |
title_full | Graph Theory on Brain Cortical Sources in Parkinson’s Disease: The Analysis of ‘Small World’ Organization from EEG |
title_fullStr | Graph Theory on Brain Cortical Sources in Parkinson’s Disease: The Analysis of ‘Small World’ Organization from EEG |
title_full_unstemmed | Graph Theory on Brain Cortical Sources in Parkinson’s Disease: The Analysis of ‘Small World’ Organization from EEG |
title_short | Graph Theory on Brain Cortical Sources in Parkinson’s Disease: The Analysis of ‘Small World’ Organization from EEG |
title_sort | graph theory on brain cortical sources in parkinson’s disease: the analysis of ‘small world’ organization from eeg |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587014/ https://www.ncbi.nlm.nih.gov/pubmed/34770573 http://dx.doi.org/10.3390/s21217266 |
work_keys_str_mv | AT vecchiofabrizio graphtheoryonbraincorticalsourcesinparkinsonsdiseasetheanalysisofsmallworldorganizationfromeeg AT pappaletterachiara graphtheoryonbraincorticalsourcesinparkinsonsdiseasetheanalysisofsmallworldorganizationfromeeg AT miragliafrancesca graphtheoryonbraincorticalsourcesinparkinsonsdiseasetheanalysisofsmallworldorganizationfromeeg AT alufrancesca graphtheoryonbraincorticalsourcesinparkinsonsdiseasetheanalysisofsmallworldorganizationfromeeg AT orticonialessandro graphtheoryonbraincorticalsourcesinparkinsonsdiseasetheanalysisofsmallworldorganizationfromeeg AT judicaelda graphtheoryonbraincorticalsourcesinparkinsonsdiseasetheanalysisofsmallworldorganizationfromeeg AT cotellimaria graphtheoryonbraincorticalsourcesinparkinsonsdiseasetheanalysisofsmallworldorganizationfromeeg AT pistoiafrancesca graphtheoryonbraincorticalsourcesinparkinsonsdiseasetheanalysisofsmallworldorganizationfromeeg AT rossinipaolomaria graphtheoryonbraincorticalsourcesinparkinsonsdiseasetheanalysisofsmallworldorganizationfromeeg |