Cargando…
Analysis of the Possibilities of Tire-Defect Inspection Based on Unsupervised Learning and Deep Learning
At present, inspection systems process visual data captured by cameras, with deep learning approaches applied to detect defects. Defect detection results usually have an accuracy higher than 94%. Real-life applications, however, are not very common. In this paper, we describe the development of a ti...
Autores principales: | Kuric, Ivan, Klarák, Jaromír, Sága, Milan, Císar, Miroslav, Hajdučík, Adrián, Wiecek, Dariusz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587048/ https://www.ncbi.nlm.nih.gov/pubmed/34770379 http://dx.doi.org/10.3390/s21217073 |
Ejemplares similares
-
Analysis of Laser Sensors and Camera Vision in the Shoe Position Inspection System
por: Klarák, Jaromír, et al.
Publicado: (2021) -
Design of Smart Steering Wheel for Unobtrusive Health and Drowsiness Monitoring
por: Babusiak, Branko, et al.
Publicado: (2021) -
Unsupervised Learning with Generative Adversarial Network for Automatic Tire Defect Detection from X-ray Images
por: Wang, Yilin, et al.
Publicado: (2021) -
Design of the Automated Calibration Process for an Experimental Laser Inspection Stand
por: Klarák, Jaromír, et al.
Publicado: (2022) -
Mechatronic Device Control by Artificial Intelligence
por: Bohušík, Martin, et al.
Publicado: (2023)