Cargando…

Multiple Compact Camera Fluorescence Detector for Real-Time PCR Devices †

The polymerase chain reaction is an important technique in biological research because it tests for diseases with a small amount of DNA. However, this process is time consuming and can lead to sample contamination. Recently, real-time PCR techniques have emerged which make it possible to monitor the...

Descripción completa

Detalles Bibliográficos
Autores principales: Koo, Seul-Bit-Na, Chi, Hyeon-Gyu, Kim, Jong-Dae, Kim, Yu-Seop, Park, Ji-Sung, Park, Chan-Young, Lee, Deuk-Ju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587052/
https://www.ncbi.nlm.nih.gov/pubmed/34770319
http://dx.doi.org/10.3390/s21217013
Descripción
Sumario:The polymerase chain reaction is an important technique in biological research because it tests for diseases with a small amount of DNA. However, this process is time consuming and can lead to sample contamination. Recently, real-time PCR techniques have emerged which make it possible to monitor the amplification process for each cycle in real time. Existing camera-based systems that measure fluorescence after DNA amplification simultaneously process fluorescence excitation and emission for dozens of tubes. Therefore, there is a limit to the size, cost, and assembly of the optical element. In recent years, imaging devices for high-performance, open platforms have benefitted from significant innovations. In this paper, we propose a fluorescence detector for real-time PCR devices using an open platform camera. This system can reduce the cost, and can be miniaturized. To simplify the optical system, four low-cost, compact cameras were used. In addition, the field of view of the entire tube was minimized by dividing it into quadrants. An effective image processing method was used to compensate for the reduction in the signal-to-noise ratio. Using a reference fluorescence material, it was confirmed that the proposed system enables stable fluorescence detection according to the amount of DNA.