Cargando…
Deep Learning-Based Optimal Smart Shoes Sensor Selection for Energy Expenditure and Heart Rate Estimation
Wearable technologies are known to improve our quality of life. Among the various wearable devices, shoes are non-intrusive, lightweight, and can be used for outdoor activities. In this study, we estimated the energy consumption and heart rate in an environment (i.e., running on a treadmill) using s...
Autores principales: | Eom, Heesang, Roh, Jongryun, Hariyani, Yuli Sun, Baek, Suwhan, Lee, Sukho, Kim, Sayup, Park, Cheolsoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587085/ https://www.ncbi.nlm.nih.gov/pubmed/34770365 http://dx.doi.org/10.3390/s21217058 |
Ejemplares similares
-
Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns
por: Sunarya, Unang, et al.
Publicado: (2020) -
Effect of a Recliner Chair with Rocking Motions on Sleep Efficiency
por: Baek, Suwhan, et al.
Publicado: (2021) -
End-To-End Deep Learning Architecture for Continuous Blood Pressure Estimation Using Attention Mechanism
por: Eom, Heesang, et al.
Publicado: (2020) -
Automated White Blood Cell Counting in Nailfold Capillary Using Deep Learning Segmentation and Video Stabilization
por: Kim, Byeonghwi, et al.
Publicado: (2020) -
A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram
por: Lee, Kwang Jin, et al.
Publicado: (2019)