Cargando…

Simulation of the Transmission Spectrum of Long-Period Fiber Gratings Structures with a Propagating Acoustic Shock Front

In this paper, we investigate modification of transmission spectra of long-period fiber grating structures with an acoustic shock front propagating along the fiber. We simulate transmission through inhomogeneous long-period fiber gratings, π-shift and reflective π-shift gratings deformed by an acous...

Descripción completa

Detalles Bibliográficos
Autores principales: Ivanov, Oleg V., Caldas, Paulo, Rego, Gaspar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587164/
https://www.ncbi.nlm.nih.gov/pubmed/34770518
http://dx.doi.org/10.3390/s21217212
Descripción
Sumario:In this paper, we investigate modification of transmission spectra of long-period fiber grating structures with an acoustic shock front propagating along the fiber. We simulate transmission through inhomogeneous long-period fiber gratings, π-shift and reflective π-shift gratings deformed by an acoustic shock front. Coupled mode equations describing interaction of co-propagating modes in a long-period fiber grating structures with inhomogeneous deformation are used for the simulation. Two types of apodization are considered for the grating modulation amplitude, such as uniform and raised-cosine. We demonstrate how the transmission spectrum is produced by interference between the core and cladding modes coupled at several parts of the gratings having different periods. For the π-shift long-period fiber grating having split spectral notch, the gap between the two dips becomes several times wider in the grating with the acoustic wave front than the gap in the unstrained grating. The behavior of reflective long-period fiber gratings depends on the magnitude of the phase shift near the reflective surface: an additional dip is formed in the 0-shift grating and the short-wavelength dip disappears in the π-shift grating.