Cargando…
An Innovative Approach of Parameter Loading Path Design for Grain Refinement and Its Application in Ni80A Superalloy
In order to obtain the desired mechanical properties of products, an innovative method of loading parameter designs for acquiring the desired grain refinement is proposed, and it has been applied in the compression process of Ni80A superalloy. The deformation mechanism maps derived from processing m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587302/ https://www.ncbi.nlm.nih.gov/pubmed/34772228 http://dx.doi.org/10.3390/ma14216703 |
Sumario: | In order to obtain the desired mechanical properties of products, an innovative method of loading parameter designs for acquiring the desired grain refinement is proposed, and it has been applied in the compression process of Ni80A superalloy. The deformation mechanism maps derived from processing maps based on the Dynamic Materials Model (DMM) theory were constructed, since the critical indicator values corresponding to dynamic recrystallization (DRX) and dynamic recovery (DRV) mechanisms were determined. The processing-parameter domains with DRX mechanisms were separated from the deformation mechanism map, while such domains were chaotic and difficult to apply in innovative parameter loading path design. The speed-loading path derived from strain rate-loading path in a compression process was pursued. The grain refinement domains are discretized into a finite series of sub-domains with clear processing parameters, and the optimal strain rate of each sub-domain is determined by step-by-step finite element simulation. A 3D response surface of the innovative optimal loading path of strain rate was fitted by interpolating methods. Finally, the isothermal compression experiments for Ni80A superalloy were conducted, and the microstructure observations indicated that the desired grain refinement was achieved. This innovative method of parameter loading path design contributes to the microstructure adjustment of the alloys with DRX mechanism. |
---|