Cargando…
Development and In Vitro Evaluation of Biocompatible PLA-Based Trilayer Nanofibrous Membranes for the Delivery of Nanoceria: A Novel Approach for Diabetic Wound Healing
The attempts to explore and optimize the efficiency of diabetic wound healing’s promotors are still in progress. Incorporation of cerium oxide nanoparticles (nCeO(2)) in appropriate nanofibers (NFs) can prolong and maximize their promoting effect for the healing of diabetic wounds, through their sus...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587307/ https://www.ncbi.nlm.nih.gov/pubmed/34771187 http://dx.doi.org/10.3390/polym13213630 |
_version_ | 1784598108821258240 |
---|---|
author | Hussein, Mohamed Ahmed Mohamady Su, Sena Ulag, Songul Woźniak, Agata Grinholc, Mariusz Erdemir, Gökce Erdem Kuruca, Serap Gunduz, Oguzhan Muhammed, Mamoun El-Sherbiny, Ibrahim M. Megahed, Mosaad |
author_facet | Hussein, Mohamed Ahmed Mohamady Su, Sena Ulag, Songul Woźniak, Agata Grinholc, Mariusz Erdemir, Gökce Erdem Kuruca, Serap Gunduz, Oguzhan Muhammed, Mamoun El-Sherbiny, Ibrahim M. Megahed, Mosaad |
author_sort | Hussein, Mohamed Ahmed Mohamady |
collection | PubMed |
description | The attempts to explore and optimize the efficiency of diabetic wound healing’s promotors are still in progress. Incorporation of cerium oxide nanoparticles (nCeO(2)) in appropriate nanofibers (NFs) can prolong and maximize their promoting effect for the healing of diabetic wounds, through their sustained releases, as well as the nanofibers role in mimicking of the extra cellular matrix (ECM). The as-prepared nCeO(2) were analyzed by using UV–Vis spectroscopy, XRD, SEM–EDX, TEM and FTIR, where TEM and SEM images of both aqueous suspension and powder showed spherical/ovoid-shaped particles. Biodegradable trilayer NFs with cytobiocompatibility were developed to sandwich nCeO(2) in PVA NFs as a middle layer where PLA NFs were electrospun as outer bilayer. The nCeO(2)-loaded trilayer NFs were characterized by SEM, XRD, FTIR and DSC. A two-stage release behavior was observed when the nanoceria was released from the trilayer-based nanofibers; an initial burst release took place, and then it was followed by a sustained release pattern. The mouse embryo fibroblasts, i.e., 3T3 cells, were seeded over the nCeO(2)-loaded NFs mats to investigate their cyto-biocompatibility. The presence and sustained release of nCeO(2) efficiently enhance the adhesion, growth and proliferation of the fibroblasts’ populations. Moreover, the incorporation of nCeO(2) with a higher amount into the designed trilayer NFs demonstrated a significant improvement in morphological, mechanical, thermal and cyto-biocompatibility properties than lower doses. Overall, the obtained results suggest that designated trilayer nanofibrous membranes would offer a specific approach for the treatment of diabetic wounds through an effective controlled release of nCeO(2). |
format | Online Article Text |
id | pubmed-8587307 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85873072021-11-13 Development and In Vitro Evaluation of Biocompatible PLA-Based Trilayer Nanofibrous Membranes for the Delivery of Nanoceria: A Novel Approach for Diabetic Wound Healing Hussein, Mohamed Ahmed Mohamady Su, Sena Ulag, Songul Woźniak, Agata Grinholc, Mariusz Erdemir, Gökce Erdem Kuruca, Serap Gunduz, Oguzhan Muhammed, Mamoun El-Sherbiny, Ibrahim M. Megahed, Mosaad Polymers (Basel) Article The attempts to explore and optimize the efficiency of diabetic wound healing’s promotors are still in progress. Incorporation of cerium oxide nanoparticles (nCeO(2)) in appropriate nanofibers (NFs) can prolong and maximize their promoting effect for the healing of diabetic wounds, through their sustained releases, as well as the nanofibers role in mimicking of the extra cellular matrix (ECM). The as-prepared nCeO(2) were analyzed by using UV–Vis spectroscopy, XRD, SEM–EDX, TEM and FTIR, where TEM and SEM images of both aqueous suspension and powder showed spherical/ovoid-shaped particles. Biodegradable trilayer NFs with cytobiocompatibility were developed to sandwich nCeO(2) in PVA NFs as a middle layer where PLA NFs were electrospun as outer bilayer. The nCeO(2)-loaded trilayer NFs were characterized by SEM, XRD, FTIR and DSC. A two-stage release behavior was observed when the nanoceria was released from the trilayer-based nanofibers; an initial burst release took place, and then it was followed by a sustained release pattern. The mouse embryo fibroblasts, i.e., 3T3 cells, were seeded over the nCeO(2)-loaded NFs mats to investigate their cyto-biocompatibility. The presence and sustained release of nCeO(2) efficiently enhance the adhesion, growth and proliferation of the fibroblasts’ populations. Moreover, the incorporation of nCeO(2) with a higher amount into the designed trilayer NFs demonstrated a significant improvement in morphological, mechanical, thermal and cyto-biocompatibility properties than lower doses. Overall, the obtained results suggest that designated trilayer nanofibrous membranes would offer a specific approach for the treatment of diabetic wounds through an effective controlled release of nCeO(2). MDPI 2021-10-21 /pmc/articles/PMC8587307/ /pubmed/34771187 http://dx.doi.org/10.3390/polym13213630 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hussein, Mohamed Ahmed Mohamady Su, Sena Ulag, Songul Woźniak, Agata Grinholc, Mariusz Erdemir, Gökce Erdem Kuruca, Serap Gunduz, Oguzhan Muhammed, Mamoun El-Sherbiny, Ibrahim M. Megahed, Mosaad Development and In Vitro Evaluation of Biocompatible PLA-Based Trilayer Nanofibrous Membranes for the Delivery of Nanoceria: A Novel Approach for Diabetic Wound Healing |
title | Development and In Vitro Evaluation of Biocompatible PLA-Based Trilayer Nanofibrous Membranes for the Delivery of Nanoceria: A Novel Approach for Diabetic Wound Healing |
title_full | Development and In Vitro Evaluation of Biocompatible PLA-Based Trilayer Nanofibrous Membranes for the Delivery of Nanoceria: A Novel Approach for Diabetic Wound Healing |
title_fullStr | Development and In Vitro Evaluation of Biocompatible PLA-Based Trilayer Nanofibrous Membranes for the Delivery of Nanoceria: A Novel Approach for Diabetic Wound Healing |
title_full_unstemmed | Development and In Vitro Evaluation of Biocompatible PLA-Based Trilayer Nanofibrous Membranes for the Delivery of Nanoceria: A Novel Approach for Diabetic Wound Healing |
title_short | Development and In Vitro Evaluation of Biocompatible PLA-Based Trilayer Nanofibrous Membranes for the Delivery of Nanoceria: A Novel Approach for Diabetic Wound Healing |
title_sort | development and in vitro evaluation of biocompatible pla-based trilayer nanofibrous membranes for the delivery of nanoceria: a novel approach for diabetic wound healing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587307/ https://www.ncbi.nlm.nih.gov/pubmed/34771187 http://dx.doi.org/10.3390/polym13213630 |
work_keys_str_mv | AT husseinmohamedahmedmohamady developmentandinvitroevaluationofbiocompatibleplabasedtrilayernanofibrousmembranesforthedeliveryofnanoceriaanovelapproachfordiabeticwoundhealing AT susena developmentandinvitroevaluationofbiocompatibleplabasedtrilayernanofibrousmembranesforthedeliveryofnanoceriaanovelapproachfordiabeticwoundhealing AT ulagsongul developmentandinvitroevaluationofbiocompatibleplabasedtrilayernanofibrousmembranesforthedeliveryofnanoceriaanovelapproachfordiabeticwoundhealing AT wozniakagata developmentandinvitroevaluationofbiocompatibleplabasedtrilayernanofibrousmembranesforthedeliveryofnanoceriaanovelapproachfordiabeticwoundhealing AT grinholcmariusz developmentandinvitroevaluationofbiocompatibleplabasedtrilayernanofibrousmembranesforthedeliveryofnanoceriaanovelapproachfordiabeticwoundhealing AT erdemirgokce developmentandinvitroevaluationofbiocompatibleplabasedtrilayernanofibrousmembranesforthedeliveryofnanoceriaanovelapproachfordiabeticwoundhealing AT erdemkurucaserap developmentandinvitroevaluationofbiocompatibleplabasedtrilayernanofibrousmembranesforthedeliveryofnanoceriaanovelapproachfordiabeticwoundhealing AT gunduzoguzhan developmentandinvitroevaluationofbiocompatibleplabasedtrilayernanofibrousmembranesforthedeliveryofnanoceriaanovelapproachfordiabeticwoundhealing AT muhammedmamoun developmentandinvitroevaluationofbiocompatibleplabasedtrilayernanofibrousmembranesforthedeliveryofnanoceriaanovelapproachfordiabeticwoundhealing AT elsherbinyibrahimm developmentandinvitroevaluationofbiocompatibleplabasedtrilayernanofibrousmembranesforthedeliveryofnanoceriaanovelapproachfordiabeticwoundhealing AT megahedmosaad developmentandinvitroevaluationofbiocompatibleplabasedtrilayernanofibrousmembranesforthedeliveryofnanoceriaanovelapproachfordiabeticwoundhealing |