Cargando…
Comparison of Machine Learning Methods towards Developing Interpretable Polyamide Property Prediction
Polyamides are often used for their superior thermal, mechanical, and chemical properties. They form a diverse set of materials that have a large variation in properties between linear to aromatic compounds, which renders the traditional quantitative structure–property relationship (QSPR) challengin...
Autores principales: | Lee, Franklin Langlang, Park, Jaehong, Goyal, Sushmit, Qaroush, Yousef, Wang, Shihu, Yoon, Hong, Rammohan, Aravind, Shim, Youngseon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587315/ https://www.ncbi.nlm.nih.gov/pubmed/34771210 http://dx.doi.org/10.3390/polym13213653 |
Ejemplares similares
-
Prediction and Interpretation of Polymer Properties
Using the Graph Convolutional Network
por: Park, Jaehong, et al.
Publicado: (2022) -
A Computer Simulation Study of Thermal and Mechanical Properties of Poly(Ionic Liquid)s
por: Shim, Youngseon, et al.
Publicado: (2022) -
Crystallization and Performance of Polyamide Blends Comprising Polyamide 4, Polyamide 6, and Their Copolymers
por: Zhang, Yajing, et al.
Publicado: (2023) -
Fabrication of Polyamide-6 Membranes—The Effect of Gelation Time towards Their Morphological, Physical and Transport Properties
por: Ebrahimi, Mohammad, et al.
Publicado: (2022) -
Heteroaromatic Polyamides with Improved Thermal and Mechanical Properties
por: Trigo-López, Miriam, et al.
Publicado: (2020)