Cargando…

Light-Driven Linear Inchworm Motor Based on Liquid Crystal Elastomer Actuators Fabricated with Rubbing Overwriting

Linear displacement is used for positioning and scanning, e.g., in robotics at different scales or in scientific instrumentation. Most linear motors are either powered by rotary drives or are driven directly by pressure, electromagnetic forces or a shape change in a medium, such as piezoelectrics or...

Descripción completa

Detalles Bibliográficos
Autores principales: Rogóż, Mikołaj, Haberko, Jakub, Wasylczyk, Piotr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587320/
https://www.ncbi.nlm.nih.gov/pubmed/34772214
http://dx.doi.org/10.3390/ma14216688
_version_ 1784598113232617472
author Rogóż, Mikołaj
Haberko, Jakub
Wasylczyk, Piotr
author_facet Rogóż, Mikołaj
Haberko, Jakub
Wasylczyk, Piotr
author_sort Rogóż, Mikołaj
collection PubMed
description Linear displacement is used for positioning and scanning, e.g., in robotics at different scales or in scientific instrumentation. Most linear motors are either powered by rotary drives or are driven directly by pressure, electromagnetic forces or a shape change in a medium, such as piezoelectrics or shape-memory materials. Here, we present a centimeter-scale light-powered linear inchworm motor, driven by two liquid crystal elastomer (LCE) accordion-like actuators. The rubbing overwriting technique was used to fabricate the LCE actuators, made of elastomer film with patterned alignment. In the linear motor, a scanned green laser beam induces a sequence of travelling deformations in a pair of actuators that move a gripper, which couples to a shaft via friction moving it with an average speed in the order of millimeters per second. The prototype linear motor demonstrates how LCE light-driven actuators with a limited stroke can be used to drive more complex mechanisms, where large displacements can be achieved, defined only by the technical constrains (the shaft length in our case), and not by the limited strain of the material. Inchworm motors driven by LCE actuators may be scaled down to sub-millimeter size and can be used in applications where remote control and power supply with light, either delivered in free space beams or via fibers, is an advantage.
format Online
Article
Text
id pubmed-8587320
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85873202021-11-13 Light-Driven Linear Inchworm Motor Based on Liquid Crystal Elastomer Actuators Fabricated with Rubbing Overwriting Rogóż, Mikołaj Haberko, Jakub Wasylczyk, Piotr Materials (Basel) Communication Linear displacement is used for positioning and scanning, e.g., in robotics at different scales or in scientific instrumentation. Most linear motors are either powered by rotary drives or are driven directly by pressure, electromagnetic forces or a shape change in a medium, such as piezoelectrics or shape-memory materials. Here, we present a centimeter-scale light-powered linear inchworm motor, driven by two liquid crystal elastomer (LCE) accordion-like actuators. The rubbing overwriting technique was used to fabricate the LCE actuators, made of elastomer film with patterned alignment. In the linear motor, a scanned green laser beam induces a sequence of travelling deformations in a pair of actuators that move a gripper, which couples to a shaft via friction moving it with an average speed in the order of millimeters per second. The prototype linear motor demonstrates how LCE light-driven actuators with a limited stroke can be used to drive more complex mechanisms, where large displacements can be achieved, defined only by the technical constrains (the shaft length in our case), and not by the limited strain of the material. Inchworm motors driven by LCE actuators may be scaled down to sub-millimeter size and can be used in applications where remote control and power supply with light, either delivered in free space beams or via fibers, is an advantage. MDPI 2021-11-06 /pmc/articles/PMC8587320/ /pubmed/34772214 http://dx.doi.org/10.3390/ma14216688 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Rogóż, Mikołaj
Haberko, Jakub
Wasylczyk, Piotr
Light-Driven Linear Inchworm Motor Based on Liquid Crystal Elastomer Actuators Fabricated with Rubbing Overwriting
title Light-Driven Linear Inchworm Motor Based on Liquid Crystal Elastomer Actuators Fabricated with Rubbing Overwriting
title_full Light-Driven Linear Inchworm Motor Based on Liquid Crystal Elastomer Actuators Fabricated with Rubbing Overwriting
title_fullStr Light-Driven Linear Inchworm Motor Based on Liquid Crystal Elastomer Actuators Fabricated with Rubbing Overwriting
title_full_unstemmed Light-Driven Linear Inchworm Motor Based on Liquid Crystal Elastomer Actuators Fabricated with Rubbing Overwriting
title_short Light-Driven Linear Inchworm Motor Based on Liquid Crystal Elastomer Actuators Fabricated with Rubbing Overwriting
title_sort light-driven linear inchworm motor based on liquid crystal elastomer actuators fabricated with rubbing overwriting
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587320/
https://www.ncbi.nlm.nih.gov/pubmed/34772214
http://dx.doi.org/10.3390/ma14216688
work_keys_str_mv AT rogozmikołaj lightdrivenlinearinchwormmotorbasedonliquidcrystalelastomeractuatorsfabricatedwithrubbingoverwriting
AT haberkojakub lightdrivenlinearinchwormmotorbasedonliquidcrystalelastomeractuatorsfabricatedwithrubbingoverwriting
AT wasylczykpiotr lightdrivenlinearinchwormmotorbasedonliquidcrystalelastomeractuatorsfabricatedwithrubbingoverwriting