Cargando…
Time Series Segmentation Based on Stationarity Analysis to Improve New Samples Prediction
A wide range of applications based on sequential data, named time series, have become increasingly popular in recent years, mainly those based on the Internet of Things (IoT). Several different machine learning algorithms exploit the patterns extracted from sequential data to support multiple tasks....
Autores principales: | Silva, Ricardo Petri, Zarpelão, Bruno Bogaz, Cano, Alberto, Junior, Sylvio Barbon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587387/ https://www.ncbi.nlm.nih.gov/pubmed/34770639 http://dx.doi.org/10.3390/s21217333 |
Ejemplares similares
-
IoTDS: A One-Class Classification Approach to Detect Botnets in Internet of Things Devices
por: Bezerra, Vitor Hugo, et al.
Publicado: (2019) -
Smoothing and stationarity enforcement framework for deep learning time-series forecasting
por: Livieris, Ioannis E., et al.
Publicado: (2021) -
The Profiles of Non-stationarity and Non-linearity in the Time Series of Resting-State Brain Networks
por: Guan, Sihai, et al.
Publicado: (2020) -
Coupling, stationarity, and regeneration /
por: Thorisson, Hermann
Publicado: (2000) -
Stationarity and Convergence in Reduce-or-Retreat Minimization
por: Levy, Adam B
Publicado: (2012)