Cargando…
Construction of Self-Healing Disulfide-Linked Silicone Elastomers by Thiol Oxidation Coupling Reaction
Developing self-healing silicone elastomers are highly significant because of their promising applications. Herein, we present novel self-healing disulfide-linked silicone elastomers (SEs) based on thiol-terminated sulfur-containing heterochain polysiloxanes (P-SHs) and three thiol-containing crossl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587408/ https://www.ncbi.nlm.nih.gov/pubmed/34771287 http://dx.doi.org/10.3390/polym13213729 |
_version_ | 1784598133210087424 |
---|---|
author | Huang, Yanhua Yan, Jianpan Wang, Dengxu Feng, Shengyu Zhou, Chuanjian |
author_facet | Huang, Yanhua Yan, Jianpan Wang, Dengxu Feng, Shengyu Zhou, Chuanjian |
author_sort | Huang, Yanhua |
collection | PubMed |
description | Developing self-healing silicone elastomers are highly significant because of their promising applications. Herein, we present novel self-healing disulfide-linked silicone elastomers (SEs) based on thiol-terminated sulfur-containing heterochain polysiloxanes (P-SHs) and three thiol-containing crosslinkers, including pentaerythritol tetrakis(β-mercaptopropionate) (PETMP), octa(3-mercaptopropyl)silsesquioxane (POSS-SH), and poly[(mercaptopropyl)methylsiloxane] (PMMS), via the thiol oxidation coupling reactions. The construction of these SEs can rapidly proceed at room temperature. The effects of crosslinker species and amounts on the formability and mechanical properties were investigated. The silicone elastomers can be self-healed by heating at 150 °C for 2 h or under UV radiation for 30 min after cutting them into pieces and the self-healing efficiency is >70%. Moreover, they can be utilized as adhesives for bonding glass sheets, which can hold a 200 g weight. The bonding is reversible and can repeatedly proceed many times, indicating that these materials can promisingly be applied as reversible adhesives. These results indicate that a thiol oxidation coupling reaction is a simple and effective strategy for the construction of self-healing disulfide-linked elastomers. Under this strategy, more disulfide-linked organic elastomers with self-healing properties can be designed and constructed and their applications can be further explored. |
format | Online Article Text |
id | pubmed-8587408 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85874082021-11-13 Construction of Self-Healing Disulfide-Linked Silicone Elastomers by Thiol Oxidation Coupling Reaction Huang, Yanhua Yan, Jianpan Wang, Dengxu Feng, Shengyu Zhou, Chuanjian Polymers (Basel) Article Developing self-healing silicone elastomers are highly significant because of their promising applications. Herein, we present novel self-healing disulfide-linked silicone elastomers (SEs) based on thiol-terminated sulfur-containing heterochain polysiloxanes (P-SHs) and three thiol-containing crosslinkers, including pentaerythritol tetrakis(β-mercaptopropionate) (PETMP), octa(3-mercaptopropyl)silsesquioxane (POSS-SH), and poly[(mercaptopropyl)methylsiloxane] (PMMS), via the thiol oxidation coupling reactions. The construction of these SEs can rapidly proceed at room temperature. The effects of crosslinker species and amounts on the formability and mechanical properties were investigated. The silicone elastomers can be self-healed by heating at 150 °C for 2 h or under UV radiation for 30 min after cutting them into pieces and the self-healing efficiency is >70%. Moreover, they can be utilized as adhesives for bonding glass sheets, which can hold a 200 g weight. The bonding is reversible and can repeatedly proceed many times, indicating that these materials can promisingly be applied as reversible adhesives. These results indicate that a thiol oxidation coupling reaction is a simple and effective strategy for the construction of self-healing disulfide-linked elastomers. Under this strategy, more disulfide-linked organic elastomers with self-healing properties can be designed and constructed and their applications can be further explored. MDPI 2021-10-28 /pmc/articles/PMC8587408/ /pubmed/34771287 http://dx.doi.org/10.3390/polym13213729 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Huang, Yanhua Yan, Jianpan Wang, Dengxu Feng, Shengyu Zhou, Chuanjian Construction of Self-Healing Disulfide-Linked Silicone Elastomers by Thiol Oxidation Coupling Reaction |
title | Construction of Self-Healing Disulfide-Linked Silicone Elastomers by Thiol Oxidation Coupling Reaction |
title_full | Construction of Self-Healing Disulfide-Linked Silicone Elastomers by Thiol Oxidation Coupling Reaction |
title_fullStr | Construction of Self-Healing Disulfide-Linked Silicone Elastomers by Thiol Oxidation Coupling Reaction |
title_full_unstemmed | Construction of Self-Healing Disulfide-Linked Silicone Elastomers by Thiol Oxidation Coupling Reaction |
title_short | Construction of Self-Healing Disulfide-Linked Silicone Elastomers by Thiol Oxidation Coupling Reaction |
title_sort | construction of self-healing disulfide-linked silicone elastomers by thiol oxidation coupling reaction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587408/ https://www.ncbi.nlm.nih.gov/pubmed/34771287 http://dx.doi.org/10.3390/polym13213729 |
work_keys_str_mv | AT huangyanhua constructionofselfhealingdisulfidelinkedsiliconeelastomersbythioloxidationcouplingreaction AT yanjianpan constructionofselfhealingdisulfidelinkedsiliconeelastomersbythioloxidationcouplingreaction AT wangdengxu constructionofselfhealingdisulfidelinkedsiliconeelastomersbythioloxidationcouplingreaction AT fengshengyu constructionofselfhealingdisulfidelinkedsiliconeelastomersbythioloxidationcouplingreaction AT zhouchuanjian constructionofselfhealingdisulfidelinkedsiliconeelastomersbythioloxidationcouplingreaction |