Cargando…
Deceptive Online Content Detection Using Only Message Characteristics and a Machine Learning Trained Expert System
This paper considers the use of a post metadata-based approach to identifying intentionally deceptive online content. It presents the use of an inherently explainable artificial intelligence technique, which utilizes machine learning to train an expert system, for this purpose. It considers the role...
Autores principales: | Liang, Xinyu (Sherwin), Straub, Jeremy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587453/ https://www.ncbi.nlm.nih.gov/pubmed/34770390 http://dx.doi.org/10.3390/s21217083 |
Ejemplares similares
-
Machine learning performance validation and training using a ‘perfect’ expert system
por: Straub, Jeremy
Publicado: (2021) -
Affection, Deception, and Evolution: Deceptive Affectionate Messages as Mate Retention Behaviors
por: Redlick, Madeleine H., et al.
Publicado: (2018) -
Impact of Factors of Online Deceptive Reviews on Customer Purchase Decision Based on Machine Learning
por: Zhong, Minjuan, et al.
Publicado: (2021) -
Promises and lies: can observers detect deception in written messages
por: Chen, Jingnan, et al.
Publicado: (2016) -
Retracted: Impact of Factors of Online Deceptive Reviews on Customer Purchase Decision Based on Machine Learning
por: Healthcare Engineering, Journal of
Publicado: (2023)