Cargando…

Nanocrystalline Cellulose Supported MnO(2) Composite Materials for High-Performance Lithium-Ion Batteries

The rate capability and poor cycling stability of lithium-ion batteries (LIBs) are predominantly caused by the large volume expansion upon cycling and poor electrical conductivity of manganese dioxide (MnO(2)), which also exhibits the highest theoretical capacity among manganese oxides. In this stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Tran, Quang Nhat, Vo, Thuan Ngoc, Kim, Il Tae, Kim, Ji Hyeon, Lee, Dal Ho, Park, Sang Joon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587563/
https://www.ncbi.nlm.nih.gov/pubmed/34772145
http://dx.doi.org/10.3390/ma14216619
_version_ 1784598180946509824
author Tran, Quang Nhat
Vo, Thuan Ngoc
Kim, Il Tae
Kim, Ji Hyeon
Lee, Dal Ho
Park, Sang Joon
author_facet Tran, Quang Nhat
Vo, Thuan Ngoc
Kim, Il Tae
Kim, Ji Hyeon
Lee, Dal Ho
Park, Sang Joon
author_sort Tran, Quang Nhat
collection PubMed
description The rate capability and poor cycling stability of lithium-ion batteries (LIBs) are predominantly caused by the large volume expansion upon cycling and poor electrical conductivity of manganese dioxide (MnO(2)), which also exhibits the highest theoretical capacity among manganese oxides. In this study, a nanocomposite of nanosized MnO(2) and pyrolyzed nanocrystalline cellulose (CNC) was prepared with high electrical conductivity to enhance the electrochemical performance of LIBs. The nanocomposite electrode showed an initial discharge capacity of 1302 mAh g(−1) at 100 mA g(−1) and exhibited a high discharge capacity of 305 mAh g(−1) after 1000 cycles. Moreover, the MnO(2)-CNC nanocomposite delivered a good rate capability of up to 10 A g(−1) and accommodated the large volume change upon repeated cycling tests.
format Online
Article
Text
id pubmed-8587563
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85875632021-11-13 Nanocrystalline Cellulose Supported MnO(2) Composite Materials for High-Performance Lithium-Ion Batteries Tran, Quang Nhat Vo, Thuan Ngoc Kim, Il Tae Kim, Ji Hyeon Lee, Dal Ho Park, Sang Joon Materials (Basel) Article The rate capability and poor cycling stability of lithium-ion batteries (LIBs) are predominantly caused by the large volume expansion upon cycling and poor electrical conductivity of manganese dioxide (MnO(2)), which also exhibits the highest theoretical capacity among manganese oxides. In this study, a nanocomposite of nanosized MnO(2) and pyrolyzed nanocrystalline cellulose (CNC) was prepared with high electrical conductivity to enhance the electrochemical performance of LIBs. The nanocomposite electrode showed an initial discharge capacity of 1302 mAh g(−1) at 100 mA g(−1) and exhibited a high discharge capacity of 305 mAh g(−1) after 1000 cycles. Moreover, the MnO(2)-CNC nanocomposite delivered a good rate capability of up to 10 A g(−1) and accommodated the large volume change upon repeated cycling tests. MDPI 2021-11-03 /pmc/articles/PMC8587563/ /pubmed/34772145 http://dx.doi.org/10.3390/ma14216619 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tran, Quang Nhat
Vo, Thuan Ngoc
Kim, Il Tae
Kim, Ji Hyeon
Lee, Dal Ho
Park, Sang Joon
Nanocrystalline Cellulose Supported MnO(2) Composite Materials for High-Performance Lithium-Ion Batteries
title Nanocrystalline Cellulose Supported MnO(2) Composite Materials for High-Performance Lithium-Ion Batteries
title_full Nanocrystalline Cellulose Supported MnO(2) Composite Materials for High-Performance Lithium-Ion Batteries
title_fullStr Nanocrystalline Cellulose Supported MnO(2) Composite Materials for High-Performance Lithium-Ion Batteries
title_full_unstemmed Nanocrystalline Cellulose Supported MnO(2) Composite Materials for High-Performance Lithium-Ion Batteries
title_short Nanocrystalline Cellulose Supported MnO(2) Composite Materials for High-Performance Lithium-Ion Batteries
title_sort nanocrystalline cellulose supported mno(2) composite materials for high-performance lithium-ion batteries
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587563/
https://www.ncbi.nlm.nih.gov/pubmed/34772145
http://dx.doi.org/10.3390/ma14216619
work_keys_str_mv AT tranquangnhat nanocrystallinecellulosesupportedmno2compositematerialsforhighperformancelithiumionbatteries
AT vothuanngoc nanocrystallinecellulosesupportedmno2compositematerialsforhighperformancelithiumionbatteries
AT kimiltae nanocrystallinecellulosesupportedmno2compositematerialsforhighperformancelithiumionbatteries
AT kimjihyeon nanocrystallinecellulosesupportedmno2compositematerialsforhighperformancelithiumionbatteries
AT leedalho nanocrystallinecellulosesupportedmno2compositematerialsforhighperformancelithiumionbatteries
AT parksangjoon nanocrystallinecellulosesupportedmno2compositematerialsforhighperformancelithiumionbatteries