Cargando…
Deep Cooperative Spectrum Sensing Based on Residual Neural Network Using Feature Extraction and Random Forest Classifier
Some bands in the frequency spectrum have become overloaded and others underutilized due to the considerable increase in demand and user allocation policy. Cognitive radio applies detection techniques to dynamically allocate unlicensed users. Cooperative spectrum sensing is currently showing promisi...
Autores principales: | Valadão, Myke D. M., Amoedo, Diego, Costa, André, Carvalho, Celso, Sabino, Waldir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587575/ https://www.ncbi.nlm.nih.gov/pubmed/34770452 http://dx.doi.org/10.3390/s21217146 |
Ejemplares similares
-
Optimization of Spectrum Utilization in Cooperative Spectrum Sensing
por: Ali, Mohsin, et al.
Publicado: (2019) -
Cooperative Multiband Spectrum Sensing Using Radio Environment Maps and Neural Networks
por: Molina-Tenorio, Yanqueleth, et al.
Publicado: (2023) -
Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations
por: Agajanian, Steve, et al.
Publicado: (2019) -
Spectrum Sensing Method Based on Information Geometry and Deep Neural Network
por: Du, Kaixuan, et al.
Publicado: (2020) -
Predicting protein residue-residue contacts using random forests and deep networks
por: Luttrell, Joseph, et al.
Publicado: (2019)