Cargando…
Detection of Material Degradation of a Composite Cylinder Using Mode Shapes and Convolutional Neural Networks
This paper presents a numerical study of the feasibility of using vibration mode shapes to identify material degradation in composite structures. The considered structure is a multilayer composite cylinder, while the material degradation zone is, for simplicity, considered a square section of the la...
Autores principales: | Miller, Bartosz, Ziemiański, Leonard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587579/ https://www.ncbi.nlm.nih.gov/pubmed/34772212 http://dx.doi.org/10.3390/ma14216686 |
Ejemplares similares
-
Identification of Mode Shapes of a Composite Cylinder Using Convolutional Neural Networks
por: Miller, Bartosz, et al.
Publicado: (2021) -
Optimization of Dynamic and Buckling Behavior of Thin-Walled Composite Cylinder, Supported by Nature-Inspired Agorithms
por: Miller, Bartosz, et al.
Publicado: (2020) -
Multi-Objective Optimization of Thin-Walled Composite Axisymmetric Structures Using Neural Surrogate Models and Genetic Algorithms
por: Miller, Bartosz, et al.
Publicado: (2023) -
Modeling and Experimental Study for Online Measurement of Hydraulic Cylinder Micro Leakage Based on Convolutional Neural Network
por: Guo, Yuan, et al.
Publicado: (2019) -
Defect Detection of Composite Material Terahertz Image Based on Faster Region-Convolutional Neural Networks
por: Yang, Xiuwei, et al.
Publicado: (2022)