Cargando…
Phybrata Sensors and Machine Learning for Enhanced Neurophysiological Diagnosis and Treatment
Concussion injuries remain a significant public health challenge. A significant unmet clinical need remains for tools that allow related physiological impairments and longer-term health risks to be identified earlier, better quantified, and more easily monitored over time. We address this challenge...
Autores principales: | Hope, Alex J., Vashisth, Utkarsh, Parker, Matthew J., Ralston, Andreas B., Roper, Joshua M., Ralston, John D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587627/ https://www.ncbi.nlm.nih.gov/pubmed/34770729 http://dx.doi.org/10.3390/s21217417 |
Ejemplares similares
-
Physiological Vibration Acceleration (Phybrata) Sensor Assessment of Multi-System Physiological Impairments and Sensory Reweighting Following Concussion
por: Ralston, John D, et al.
Publicado: (2020) -
Accurately predicting hit songs using neurophysiology and machine learning
por: Merritt, Sean H., et al.
Publicado: (2023) -
Monitoring of postural sway with a head-mounted wearable device: effects of gender, participant state, and concussion
por: Grafton, Scott T, et al.
Publicado: (2019) -
Diagnosis and management of primary hyperparathyroidism in Europe
por: Langdahl, B.L., et al.
Publicado: (2012) -
Selenium Health Benefit Values: Updated Criteria for Mercury Risk Assessments
por: Ralston, Nicholas V. C., et al.
Publicado: (2015)