Cargando…
A Hybrid Finite Element—Machine Learning Backward Training Approach to Analyze the Optimal Machining Conditions
As machining processes are complex in nature due to the involvement of large plastic strains occurring at higher strain rates, and simultaneous thermal softening of material, it is necessary for manufacturers to have some manner of determining whether the inputs will achieve the desired outputs with...
Autores principales: | George, Kriz, Kannan, Sathish, Raza, Ali, Pervaiz, Salman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587738/ https://www.ncbi.nlm.nih.gov/pubmed/34772243 http://dx.doi.org/10.3390/ma14216717 |
Ejemplares similares
-
Optimization of Cutting Process Parameters in Inclined Drilling of Inconel 718 Using Finite Element Method and Taguchi Analysis
por: Pervaiz, Salman, et al.
Publicado: (2020) -
On the Role of Hollow Aluminium Oxide Microballoons during Machining of AZ31 Magnesium Syntactic Foam
por: Kannan, Sathish, et al.
Publicado: (2020) -
Finite Element Method in Machining Processes
por: Markopoulos, Angelos P
Publicado: (2013) -
Computational Analysis of Machining Induced Stress Distribution during Dry and Cryogenic Orthogonal Cutting of 7075 Aluminium Closed Cell Syntactic Foams
por: Thomas, Kevin K., et al.
Publicado: (2023) -
Sustainable Machining of Mg-9Al-1.4Zn Foam Used for Temporary Biomedical Implant Using Cryogenic Cooling
por: Mohammed, Abdalla, et al.
Publicado: (2022)