Cargando…
Effect of Poly(acrylamide-acrylic acid) on the Fire Resistance and Anti-Aging Properties of Transparent Flame-Retardant Hydrogel Applied in Fireproof Glass
Poly(acrylamide-acrylic acid) (P(AM-co-AA)) was synthesized via the copolymerization of acrylamide and acrylic acid and well characterized by Fourier transform infrared spectroscopy. Afterward, the obtained P(AM-co-AA) was blended with flame retardants to prepare transparent flame-retardant hydrogel...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587740/ https://www.ncbi.nlm.nih.gov/pubmed/34771226 http://dx.doi.org/10.3390/polym13213668 |
Sumario: | Poly(acrylamide-acrylic acid) (P(AM-co-AA)) was synthesized via the copolymerization of acrylamide and acrylic acid and well characterized by Fourier transform infrared spectroscopy. Afterward, the obtained P(AM-co-AA) was blended with flame retardants to prepare transparent flame-retardant hydrogel applied in the fireproof glass. The influence of poly(acrylamide-acrylic acid) on fire resistance and anti-aging properties of the transparent flame-retardant hydrogels were studied by assorted analysis methods. The optical transparency analysis shows that the light transmittance of the transparent flame-retardant hydrogel gradually decreases with the decreasing mass ratio of acrylamide to acrylic acid in P(AM-co-AA). Heat insulation testing shows that the heat insulation performance of fireproof glass applying the transparent flame-retardant hydrogel firstly decreases and then increases with decreasing mass ratio of acrylamide to acrylic acid in P(AM-co-AA). When the mass ratio of acrylamide to acrylic acid is 1:2, the obtained P(AM-co-AA) endows the resulting flame-retardant hydrogel applied in fireproof glass with the lowest light transmittance of 81.3% and lowest backside temperature of 131.4 °C at 60 min among the samples, which is attributed to the formation of a more dense and expanded char to prevent the heat transfer during combustion, as supported by the digital photos of char residues. The results of TG analysis indicate that P(AM-co-AA) imparts high thermal stability to the resulting hydrogels due to the hydrogen bonds between carboxyl and amide groups. The accelerated aging test shows that the transparent flame-retardant hydrogel containing P(AM-co-AA) is less affected by aging conditions. Especially, when the mass ratio of acrylamide to acrylic acid in P(AM-co-AA) is 4:1, the resulting transparent flame-retardant hydrogel shows a light transmittance of 82.9% and backside temperature of 173.1 °C at 60 min after 7 aging cycles, exhibiting the best comprehensive properties among the samples. |
---|