Cargando…
Mechanical Performance of 3D-Printed Biocompatible Polycarbonate for Biomechanical Applications
Additive manufacturing has experienced remarkable growth in recent years due to the customisation, precision, and cost savings compared to conventional manufacturing techniques. In parallel, materials with great potential have been developed, such as PC-ISO polycarbonate, which has biocompatibility...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587781/ https://www.ncbi.nlm.nih.gov/pubmed/34771227 http://dx.doi.org/10.3390/polym13213669 |
_version_ | 1784598248247263232 |
---|---|
author | Gómez-Gras, Giovanni Abad, Manuel D. Pérez, Marco A. |
author_facet | Gómez-Gras, Giovanni Abad, Manuel D. Pérez, Marco A. |
author_sort | Gómez-Gras, Giovanni |
collection | PubMed |
description | Additive manufacturing has experienced remarkable growth in recent years due to the customisation, precision, and cost savings compared to conventional manufacturing techniques. In parallel, materials with great potential have been developed, such as PC-ISO polycarbonate, which has biocompatibility certifications for use in the biomedical industry. However, many of these synthetic materials are not capable of meeting the mechanical stresses to which the biological structure of the human body is naturally subjected. In this study, an exhaustive characterisation of the PC-ISO was carried out, including an investigation on the influence of the printing parameters by fused filament fabrication on its mechanical behaviour. It was found that the effect of the combination of the printing parameters does not have a notable impact on the mass, cost, and manufacturing time of the specimens; however, it is relevant when determining the tensile, bending, shear, impact, and fatigue strengths. The best combinations for its application in biomechanics are proposed, and the need to combine PC-ISO with other materials to achieve the necessary strengths for functioning as a bone scaffold is demonstrated. |
format | Online Article Text |
id | pubmed-8587781 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85877812021-11-13 Mechanical Performance of 3D-Printed Biocompatible Polycarbonate for Biomechanical Applications Gómez-Gras, Giovanni Abad, Manuel D. Pérez, Marco A. Polymers (Basel) Article Additive manufacturing has experienced remarkable growth in recent years due to the customisation, precision, and cost savings compared to conventional manufacturing techniques. In parallel, materials with great potential have been developed, such as PC-ISO polycarbonate, which has biocompatibility certifications for use in the biomedical industry. However, many of these synthetic materials are not capable of meeting the mechanical stresses to which the biological structure of the human body is naturally subjected. In this study, an exhaustive characterisation of the PC-ISO was carried out, including an investigation on the influence of the printing parameters by fused filament fabrication on its mechanical behaviour. It was found that the effect of the combination of the printing parameters does not have a notable impact on the mass, cost, and manufacturing time of the specimens; however, it is relevant when determining the tensile, bending, shear, impact, and fatigue strengths. The best combinations for its application in biomechanics are proposed, and the need to combine PC-ISO with other materials to achieve the necessary strengths for functioning as a bone scaffold is demonstrated. MDPI 2021-10-25 /pmc/articles/PMC8587781/ /pubmed/34771227 http://dx.doi.org/10.3390/polym13213669 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gómez-Gras, Giovanni Abad, Manuel D. Pérez, Marco A. Mechanical Performance of 3D-Printed Biocompatible Polycarbonate for Biomechanical Applications |
title | Mechanical Performance of 3D-Printed Biocompatible Polycarbonate for Biomechanical Applications |
title_full | Mechanical Performance of 3D-Printed Biocompatible Polycarbonate for Biomechanical Applications |
title_fullStr | Mechanical Performance of 3D-Printed Biocompatible Polycarbonate for Biomechanical Applications |
title_full_unstemmed | Mechanical Performance of 3D-Printed Biocompatible Polycarbonate for Biomechanical Applications |
title_short | Mechanical Performance of 3D-Printed Biocompatible Polycarbonate for Biomechanical Applications |
title_sort | mechanical performance of 3d-printed biocompatible polycarbonate for biomechanical applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587781/ https://www.ncbi.nlm.nih.gov/pubmed/34771227 http://dx.doi.org/10.3390/polym13213669 |
work_keys_str_mv | AT gomezgrasgiovanni mechanicalperformanceof3dprintedbiocompatiblepolycarbonateforbiomechanicalapplications AT abadmanueld mechanicalperformanceof3dprintedbiocompatiblepolycarbonateforbiomechanicalapplications AT perezmarcoa mechanicalperformanceof3dprintedbiocompatiblepolycarbonateforbiomechanicalapplications |