Cargando…
Software Fault Localization through Aggregation-Based Neural Ranking for Static and Dynamic Features Selection
The automatic localization of software faults plays a critical role in assisting software professionals in fixing problems quickly. Despite various existing models for fault tolerance based on static features, localization is still challenging. By considering the dynamic features, the capabilities o...
Autor principal: | Alhumam, Abdulaziz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587821/ https://www.ncbi.nlm.nih.gov/pubmed/34770706 http://dx.doi.org/10.3390/s21217401 |
Ejemplares similares
-
An Adaptive Rank Aggregation-Based Ensemble Multi-Filter Feature Selection Method in Software Defect Prediction
por: Balogun, Abdullateef O., et al.
Publicado: (2021) -
A Novel Rank Aggregation-Based Hybrid Multifilter Wrapper Feature Selection Method in Software Defect Prediction
por: Balogun, Abdullateef O., et al.
Publicado: (2021) -
Detection and Mitigation of RPL Rank and Version Number Attacks in the Internet of Things: SRPL-RP
por: A. Almusaylim, Zahrah, et al.
Publicado: (2020) -
RankAggreg, an R package for weighted rank aggregation
por: Pihur, Vasyl, et al.
Publicado: (2009) -
Dynamic and Static Features-Aware Recommendation with Graph Neural Networks
por: Sun, Ninghua, et al.
Publicado: (2022)