Cargando…
An Improved Self-Training Method for Positive Unlabeled Time Series Classification Using DTW Barycenter Averaging
Traditional supervised time series classification (TSC) tasks assume that all training data are labeled. However, in practice, manually labelling all unlabeled data could be very time-consuming and often requires the participation of skilled domain experts. In this paper, we concern with the positiv...
Autores principales: | Li, Jing, Zhang, Haowen, Dong, Yabo, Zuo, Tongbin, Xu, Duanqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587877/ https://www.ncbi.nlm.nih.gov/pubmed/34770721 http://dx.doi.org/10.3390/s21217414 |
Ejemplares similares
-
DTW4Omics: Comparing Patterns in Biological Time Series
por: Cavill, Rachel, et al.
Publicado: (2013) -
BSDE: barycenter single-cell differential expression for case–control studies
por: Zhang, Mengqi, et al.
Publicado: (2022) -
Classification of unlabeled online media
por: Prakash, Sakthi Kumar Arul, et al.
Publicado: (2021) -
A Biomechanical Study on Failed Snatch Based on the Human and Bar Combination Barycenter
por: Liu, Gongju, et al.
Publicado: (2022) -
DTW-MIC Coexpression Networks from Time-Course Data
por: Riccadonna, Samantha, et al.
Publicado: (2016)