Cargando…
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
Semantic segmentation for high-resolution remote-sensing imagery (HRRSI) has become increasingly popular in machine vision in recent years. Most of the state-of-the-art methods for semantic segmentation of HRRSI usually emphasize the strong learning ability of deep convolutional neural network to mo...
Autores principales: | Zhong, Bo, Du, Jiang, Liu, Minghao, Yang, Aixia, Wu, Junjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587896/ https://www.ncbi.nlm.nih.gov/pubmed/34770623 http://dx.doi.org/10.3390/s21217316 |
Ejemplares similares
-
Transformer-Based Model with Dynamic Attention Pyramid Head for Semantic Segmentation of VHR Remote Sensing Imagery
por: Xu, Yufen, et al.
Publicado: (2022) -
Knowledge and Geo-Object Based Graph Convolutional Network for Remote Sensing Semantic Segmentation
por: Cui, Wei, et al.
Publicado: (2021) -
SCU-Net: Semantic Segmentation Network for Learning Channel Information on Remote Sensing Images
por: Wang, Wei, et al.
Publicado: (2022) -
Fast Semantic Segmentation of Remote Sensing Images Using a Network That Integrates Global and Local Information
por: Wu, Boyang, et al.
Publicado: (2023) -
TMNet: A Two-Branch Multi-Scale Semantic Segmentation Network for Remote Sensing Images
por: Gao, Yupeng, et al.
Publicado: (2023)