Cargando…
Detection of Iris Presentation Attacks Using Feature Fusion of Thepade’s Sorted Block Truncation Coding with Gray-Level Co-Occurrence Matrix Features
Iris biometric detection provides contactless authentication, preventing the spread of COVID-19-like contagious diseases. However, these systems are prone to spoofing attacks attempted with the help of contact lenses, replayed video, and print attacks, making them vulnerable and unsafe. This paper p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587932/ https://www.ncbi.nlm.nih.gov/pubmed/34770715 http://dx.doi.org/10.3390/s21217408 |
_version_ | 1784598301484515328 |
---|---|
author | Khade, Smita Gite, Shilpa Thepade, Sudeep D. Pradhan, Biswajeet Alamri, Abdullah |
author_facet | Khade, Smita Gite, Shilpa Thepade, Sudeep D. Pradhan, Biswajeet Alamri, Abdullah |
author_sort | Khade, Smita |
collection | PubMed |
description | Iris biometric detection provides contactless authentication, preventing the spread of COVID-19-like contagious diseases. However, these systems are prone to spoofing attacks attempted with the help of contact lenses, replayed video, and print attacks, making them vulnerable and unsafe. This paper proposes the iris liveness detection (ILD) method to mitigate spoofing attacks, taking global-level features of Thepade’s sorted block truncation coding (TSBTC) and local-level features of the gray-level co-occurrence matrix (GLCM) of the iris image. Thepade’s SBTC extracts global color texture content as features, and GLCM extracts local fine-texture details. The fusion of global and local content presentation may help distinguish between live and non-live iris samples. The fusion of Thepade’s SBTC with GLCM features is considered in experimental validations of the proposed method. The features are used to train nine assorted machine learning classifiers, including naïve Bayes (NB), decision tree (J48), support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), and ensembles (SVM + RF + NB, SVM + RF + RT, RF + SVM + MLP, J48 + RF + MLP) for ILD. Accuracy, precision, recall, and F-measure are used to evaluate the performance of the projected ILD variants. The experimentation was carried out on four standard benchmark datasets, and our proposed model showed improved results with the feature fusion approach. The proposed fusion approach gave 99.68% accuracy using the RF + J48 + MLP ensemble of classifiers, immediately followed by the RF algorithm, which gave 95.57%. The better capability of iris liveness detection will improve human–computer interaction and security in the cyber-physical space by improving person validation. |
format | Online Article Text |
id | pubmed-8587932 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85879322021-11-13 Detection of Iris Presentation Attacks Using Feature Fusion of Thepade’s Sorted Block Truncation Coding with Gray-Level Co-Occurrence Matrix Features Khade, Smita Gite, Shilpa Thepade, Sudeep D. Pradhan, Biswajeet Alamri, Abdullah Sensors (Basel) Article Iris biometric detection provides contactless authentication, preventing the spread of COVID-19-like contagious diseases. However, these systems are prone to spoofing attacks attempted with the help of contact lenses, replayed video, and print attacks, making them vulnerable and unsafe. This paper proposes the iris liveness detection (ILD) method to mitigate spoofing attacks, taking global-level features of Thepade’s sorted block truncation coding (TSBTC) and local-level features of the gray-level co-occurrence matrix (GLCM) of the iris image. Thepade’s SBTC extracts global color texture content as features, and GLCM extracts local fine-texture details. The fusion of global and local content presentation may help distinguish between live and non-live iris samples. The fusion of Thepade’s SBTC with GLCM features is considered in experimental validations of the proposed method. The features are used to train nine assorted machine learning classifiers, including naïve Bayes (NB), decision tree (J48), support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), and ensembles (SVM + RF + NB, SVM + RF + RT, RF + SVM + MLP, J48 + RF + MLP) for ILD. Accuracy, precision, recall, and F-measure are used to evaluate the performance of the projected ILD variants. The experimentation was carried out on four standard benchmark datasets, and our proposed model showed improved results with the feature fusion approach. The proposed fusion approach gave 99.68% accuracy using the RF + J48 + MLP ensemble of classifiers, immediately followed by the RF algorithm, which gave 95.57%. The better capability of iris liveness detection will improve human–computer interaction and security in the cyber-physical space by improving person validation. MDPI 2021-11-08 /pmc/articles/PMC8587932/ /pubmed/34770715 http://dx.doi.org/10.3390/s21217408 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Khade, Smita Gite, Shilpa Thepade, Sudeep D. Pradhan, Biswajeet Alamri, Abdullah Detection of Iris Presentation Attacks Using Feature Fusion of Thepade’s Sorted Block Truncation Coding with Gray-Level Co-Occurrence Matrix Features |
title | Detection of Iris Presentation Attacks Using Feature Fusion of Thepade’s Sorted Block Truncation Coding with Gray-Level Co-Occurrence Matrix Features |
title_full | Detection of Iris Presentation Attacks Using Feature Fusion of Thepade’s Sorted Block Truncation Coding with Gray-Level Co-Occurrence Matrix Features |
title_fullStr | Detection of Iris Presentation Attacks Using Feature Fusion of Thepade’s Sorted Block Truncation Coding with Gray-Level Co-Occurrence Matrix Features |
title_full_unstemmed | Detection of Iris Presentation Attacks Using Feature Fusion of Thepade’s Sorted Block Truncation Coding with Gray-Level Co-Occurrence Matrix Features |
title_short | Detection of Iris Presentation Attacks Using Feature Fusion of Thepade’s Sorted Block Truncation Coding with Gray-Level Co-Occurrence Matrix Features |
title_sort | detection of iris presentation attacks using feature fusion of thepade’s sorted block truncation coding with gray-level co-occurrence matrix features |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587932/ https://www.ncbi.nlm.nih.gov/pubmed/34770715 http://dx.doi.org/10.3390/s21217408 |
work_keys_str_mv | AT khadesmita detectionofirispresentationattacksusingfeaturefusionofthepadessortedblocktruncationcodingwithgraylevelcooccurrencematrixfeatures AT giteshilpa detectionofirispresentationattacksusingfeaturefusionofthepadessortedblocktruncationcodingwithgraylevelcooccurrencematrixfeatures AT thepadesudeepd detectionofirispresentationattacksusingfeaturefusionofthepadessortedblocktruncationcodingwithgraylevelcooccurrencematrixfeatures AT pradhanbiswajeet detectionofirispresentationattacksusingfeaturefusionofthepadessortedblocktruncationcodingwithgraylevelcooccurrencematrixfeatures AT alamriabdullah detectionofirispresentationattacksusingfeaturefusionofthepadessortedblocktruncationcodingwithgraylevelcooccurrencematrixfeatures |